• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History

عنوان
Extensional constructs in intensional type theory.

پدید آورنده
Martin Hofmann

موضوع

رده
QA76
.
9
.
A96
M378
2012

کتابخانه
Center and Library of Islamic Studies in European Languages

محل استقرار
استان: Qom ـ شهر: Qom

Center and Library of Islamic Studies in European Languages

تماس با کتابخانه : 32910706-025

INTERNATIONAL STANDARD BOOK NUMBER

(Number (ISBN
1447109635
(Number (ISBN
9781447109631

NATIONAL BIBLIOGRAPHY NUMBER

Number
b549531

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
Extensional constructs in intensional type theory.
General Material Designation
[Book]
First Statement of Responsibility
Martin Hofmann

.PUBLICATION, DISTRIBUTION, ETC

Place of Publication, Distribution, etc.
[Place of publication not identified]
Name of Publisher, Distributor, etc.
Springer
Date of Publication, Distribution, etc.
2012

CONTENTS NOTE

Text of Note
1. Introduction.- 1.1 Definitional and propositional equality.- 1.2 Extensional constructs.- 1.3 Method.- 1.3.1 The use of categorical models.- 1.3.2 Syntactic models.- 1.4 Applications.- 1.4.1 Application to machine-assisted theorem proving.- 1.5 Overview.- 2. Syntax and semantics of dependent types.- 2.1 Syntax for a core calculus.- 2.1.1 Raw syntax.- 2.1.2 Judgements.- 2.1.3 Notation.- 2.1.4 Derived rules and meta-theoretic properties.- 2.2 High-level syntax.- 2.2.1 Telescopes.- 2.2.2 Elements of telescopes and context morphisms.- 2.2.3 Definitions and substitution.- 2.3 Further type formers.- 2.3.1 Unit type.- 2.3.2 ?-types.- 2.3.3 Function and cartesian product types.- 2.3.4 The Calculus of Constructions.- 2.3.5 Universes.- 2.3.6 Quotient types.- 2.4 Abstract semantics of type theory.- 2.4.1 Syntactic categories with attributes.- 2.4.2 Type constructors.- 2.5 Interpreting the syntax.- 2.5.1 Partial interpretation.- 2.5.2 Soundness of the interpretation.- 2.6 Discussion and related work.- 3. Syntactic properties of propositional equality.- 3.1 Intensional type theory.- 3.1.1 Substitution.- 3.1.2 Uniqueness of identity.- 3.1.3 Functional extensionality.- 3.2 Extensional type theory.- 3.2.1 Comparison with Troelstra's presentation.- 3.2.2 Undecidability of extensional type theory.- 3.2.3 Interpreting extensional type theory in intensional type theory.- 3.2.4 An extension of TTI for which the interpretation in TTE is surjective.- 3.2.5 Conservativity of TTE over TTI.- 3.2.6 Discussion and extensions.- 3.2.7 Conservativity of quotient types and functional extensionality.- 3.3 Related work.- 4. Proof irrelevance and subset types.- 4.1 The refinement approach.- 4.2 The deliverables approach.- 4.3 The deliverables model.- 4.3.1 Contexts.- 4.3.2 Families of specifications.- 4.3.3 Sections of specifications (deliverables).- 4.4 Model checking with Lego.- 4.4.1 Records in Lego.- 4.4.2 Deliverables in Lego.- 4.5 Type formers in the model D.- 4.5.1 Dependent products.- 4.5.2 Dependent sums.- 4.5.3 Natural numbers.- 4.5.4 The type of propositions.- 4.5.5 Proof irrelevance.- 4.5.6 Universes.- 4.6 Subset types.- 4.6.1 Subset types without impredicativity.- 4.6.2 A non-standard rule for subset types.- 4.7 Reinterpretation of the equality judgement.- 4.8 Related work.- 5. Extensionality and quotient types.- 5.1 The setoid model.- 5.1.1 Contexts of setoids.- 5.1.2 Implementing the setoid model S0 in Lego.- 5.1.3 Type formers in the setoid model.- 5.1.4 Propositions.- 5.1.5 Quotient types.- 5.1.6 Interpretation of quotient types in S0.- 5.1.7 A choice operator for quotient types.- 5.1.8 Type dependency and universes.- 5.2 The groupoid model.- 5.2.1 Groupoids.- 5.2.2 Interpretation of type formers.- 5.2.3 Uniqueness of identity.- 5.2.4 Propositional equality as isomorphism.- 5.3 A dependent setoid model.- 5.3.1 Families of setoids.- 5.3.2 Dependent product.- 5.3.3 The identity type.- 5.3.4 Inductive types.- 5.3.5 Quotient types.- 5.4 Discussion and related work.- 6. Applications.- 6.1 Tarski's fixpoint theorem.- 6.1.1 Discussion.- 6.2 Streams in type theory.- 6.3 Category theory in type theory.- 6.3.1 Categories in S0.- 6.3.2 Categories in S1.- 6.3.3 Discussion.- 6.4 Encoding of the coproduct type.- 6.4.1 Development in the setoid models.- 6.5 Some basic constructions with quotient types.- 6.5.1 Canonical factorisation of a function.- 6.5.2 Some categorical properties of S0.- 6.5.3 Subsets and quotients.- 6.5.4 Saturated subsets.- 6.5.5 Iterated quotients.- 6.5.6 Quotients and products.- 6.5.7 Quotients and function spaces.- 6.6 ? is co-continuous-intensionally.- 6.6.1 Parametrised limits of ?-chains.- 6.6.2 Development in TTE.- 6.6.3 Development in TTI.- 7. Conclusions and further work.- A.1 Extensionality axioms.- A.2 Quotient types.- A.3 Further axioms.- Appendix B. Syntax.- Appendix C. A glossary of type theories.- Appendix D. Index of symbols.

LIBRARY OF CONGRESS CLASSIFICATION

Class number
QA76
.
9
.
A96
Book number
M378
2012

PERSONAL NAME - PRIMARY RESPONSIBILITY

Martin Hofmann

PERSONAL NAME - ALTERNATIVE RESPONSIBILITY

Martin Hofmann

ELECTRONIC LOCATION AND ACCESS

Electronic name
 مطالعه متن کتاب 

[Book]

Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival