A Tutorial Introduction to Maple --;1. Differential Equations --;2. Linear Systems in the Plane --;3. Nonlinear Systems in the Plane --;4. Interacting Species --;5. Limit Cycles --;6. Hamiltonian Systems, Lyapunov Functions, and Stability --;7. Bifurcation Theory --;8. Three-Dimensional Autonomous Systems and Chaos --;9. Poincare Maps and Nonautonomous Systems in the Plane --;10. Local and Global Bifurcations --;11. The Second Part of David Hilbert's Sixteenth Problem --;12. Limit Cycles of Lienard Systems --;13. Linear Discrete Dynamical Systems --;14. Nonlinear Discrete Dynamical Systems --;15. Complex Iterative Maps --;16. Electromagnetic Waves and Optical Resonators --;17. Analysis of Nonlinear Optical Resonators.
SUMMARY OR ABSTRACT
Text of Note
Suitable for many kinds of dynamical systems courses, this book shows the power of using a computer algebra program to study dynamical systems. It provides an introduction to the theory of dynamical systems with the aid of the Maple algebraic manipulation package.
TOPICAL NAME USED AS SUBJECT
Differentiable dynamical systems -- Data processing.