Exploratory and explanatory statistical analysis of spatial data.
General Material Designation
[Book]
First Statement of Responsibility
Cornelis P A Bartels
.PUBLICATION, DISTRIBUTION, ETC
Place of Publication, Distribution, etc.
Dordrecht
Name of Publisher, Distributor, etc.
Springer Netherlands
Date of Publication, Distribution, etc.
1979
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
(270 pages)
CONTENTS NOTE
Text of Note
1: Introduction.- 1. General Introduction.- 2. Operational Statistical Methods for Analysing Spatial Data.- 2.1. Introduction.- 2.1 The structure of spatial data.- 2.3. Methods based on simple correlations between cross-regional data.- 2.4. Time-series analysis applied to spatial data.- 2.5 Adaptations of time-series analysis to the spatial context.- 2.6. Single equation explanatory models.- 2.7. Simultaneous equation models with spatial data.- 2.8. Some remaining topics.- 2.9. Final remarks.- References.- 2: Exploratory statistical analysis.- 3. The Analysis of Geographical Maps.- 3.1. Introduction.- 3.2. Methods of analysis.- 3.3. Models.- 3.4. Tests for randomness.- 3.5. Examples.- 3.6. Conclusions.- References.- 4 Construction of Interregional Input-Output Tables by Efficient Information Adding.- 4.1. Introduction.- 4.2. Regional and national accounts.- 4.3. Generation of survey-tired transaction tables.- 4.4. Results of the statistical estimations.- 4.5. Results of the minimum information estimations.- 4.6. Some conclusions.- References.- 5. Further Evidence on Alternative Procedures for Testing of Spatial Auto-Correlation among Regression Disturbances.- 5.1. Introduction.- 5.2. Formulation of the statistical decision problem.- 5.3. Moran's test statistic.- 5.4. Moments of the Moran statistic using OLS and LUS estimators.- 5.5. The likelihood ratio test.- 5.6. Simulation study of the Moran and likelihood ratio tests.- 5.7. Results.- 5.8. Conclusions.- References.- 3: Explanatory statistical analysis.- 6. Multivariate Models of Dependent Spatial Data.- 6.1. Introduction.- 6.2. Decomposable covariance structures.- 6.3. Linear models.- 6.4. Principal components.- 6.5. Conclusion.- References.- 7. Bayesian Analysis of the Linear Model with Spatial Dependence.- 7.1. Introduction.- 7.2. The nature of Bayesian inference.- 7.3. Linear regression model with spatially auto-correlated disturbances.- 7.4. An empirical application.- 7.5. Concluding remarks.- References.- 8. Alternative Methods of Estimating Spatial Interaction Models and Their Performance in Short-Term Forecasting.- 8.1. Introduction.- 8.2. Description of data and models.- 8.3. Parameter estimation and model calibration in terms of 1966 and 1971 data.- 8.4. On the accuracy of short-term forecasts made by spatial interaction models.- 8.5. An evaluation of tome alternatives designed to improve model performance.- 8.6. Conclusions.- References.- 9. Two Estimation Methods for Singly Constrained Spatial Distribution Models.- 9.1. Introduction.- 9.2. The calibration of a model.- 9.3. The maximum likelihood method.- 9.4. The least-squares method for the singly constrained model.- 9.5. Numerical results.- 9.6. Conclusions.- References.- 4: The introduction of stochastics in regional control.- 10. Stochastic Control of Regional Economies.- 10.1. Introduction.- 10.2. Mathematical representation of regional systems.- 10.3. Optimal control models of regional systems.- 104 Interaction of optimal control of regional economies with national governments.- 10.5. Problems in applying optimal control to regional systems.- 106. Conclusion.- References.