2.4.1. The Particle in a Box Model -- 2.4.2. Conjugation in Organic Molecules -- 2.4.3. Aggregation and Electronic Structure -- 2.4.4. 1t-rr Stacking Interactions -- References and Recommended Reading -- End of Chapter Questions -- Chapter Overview -- 3.1. Fundamentals of Surface Science -- 3.1.1. The Surface Energy of Solids and Liquids -- 3.1.2. Surface Free Energy of Adsorbed Monolayers -- 3.1.3. Contact Angles and Wetting Phenomena -- 3.1.4. Nanomaterials and Superhydrophobic Surfaces -- 3.2. Adsorption Phenomena: Self Assembled Monolayers -- 3.2.1. Simple Adsorption Isotherms -- 3.2.2. Other Useful Adsorption Isotherms -- 3.3. Surfactant Chemistry -- 3.3.1. Micelle and Microemulsion Formation -- 3.3.2. The Determination of Surface Excess: The CMC and the Cross Sectional Area per Molecule -- References and Recommended Reading -- End of Chapter Questions -- Chapter Overview -- 4.1. Surface Tensiometry: The Surface Tensiometer -- 4.2. Quartz Crystal Microbalance
Text of Note
4.2.1. The Piezoelectric Effect -- 4.2.2. QCM Principles -- 4.2.3. QCM and Dissipation (D) -- 4.2.4. Modern QCM-D Setup -- 4.3. Ellipsometry -- 4.3.1. Basic Principles of Electromagnetic Theory and Polarized Light -- 4.3.2. Basic Principles of Ellipsometry -- 4.3.3. Obtaining the Thickness of Films: Optical Parameters Del(A) and Psi (w) -- 4.3.4. The Ellipsometer -- 4.4. Surface Plasmon Resonance -- 4.4.1. Principles of SPR -- 4.4.2. SPR Instrument Setup -- 4.5. Dual Polarization Interferometry -- 4.5.1. Waveguide Basics -- 4.5.2. Waveguide Interferometry and the Effective Refractive Index. -- 4.5.3. Principles of Dual Polarization Interferometry -- 4.5.4. Parameters of a DPI Instrument and Common Applications -- 4.6. Spectroscopic Methods -- 4.6.1. Interactions Between Light and Matter -- 4.6.2. UV-Visible Spectroscopy -- 4.6.2.1. Principles of UV-Visible Spectroscopy -- 4.6.2.2. Setup of a UV-Visible Spectrophotometer -- 4.6.3. The Absorption of Visible Light by a Nanofilm
Text of Note
4.6.4. Molecular Fluorescence Spectroscopy -- 4.6.4.1. Principles of Fluorescence and Fluorescence Quantum Yield -- 4.6.4.2. Setup of a Fluorometer for Bulk Phase and Thin Film Fluorescence Measurements -- 4.6.5. Vibrational Spectroscopy Methods -- 4.6.5.1. Introduction to Vibrational Modes -- 4.6.5.2. Attenuated Total Reflection IR Spectroscopy -- 4.6.5.3. Reflection Absorption IR Spectroscopy -- 4.6.6. Raman Spectroscopy -- 4.6.6.1. Rayleigh and Raman Light Scattering -- 4.6.6.2. Surface Enhanced Raman Spectroscopy -- 4.7. Nonlinear Spectroscopic Methods -- 4.7.1. An Introduction to Nonlinear Optics -- 4.7.2. Second-Harmonic Generation -- 4.7.3. Sum-Frequency Generation Spectroscopy -- 4.8. X-Ray Spectroscopy -- 4.8.1. Absorption -- 4.8.2. Fluorescence -- 4.8.3. Diffraction -- 4.9. Imaging Nanostructures -- 4.9.1. Imaging Ellipsometry -- 4.9.1.1. Imaging Using Conventional Ellipsometry -- 4.9.1.2. Principles of Modern Imaging Ellipsometry -- 4.9.1.3. Methods for Extracting Ellipsometric Data in Imaging Ellipsometry
Text of Note
4.9.1.4. Image Focusing -- 4.9.1.5. Resolution of an Imaging Ellipsometer. -- 4.9.2. Scanning Probe Methods -- 4.9.2.1. Scanning Tunneling Microscopy -- 4.9.2.2. Atomic Force Microscopy -- 4.9.3. Transmission Electron Microscopy -- 4.9.3.1. Principles of TEM -- 4.9.3.2. TEM Instrumentation -- 4.9.4. Near-Field Scanning Optical Microscopy -- 4.9.4.1. History and Principles of NSOM -- 4.9.4.2. Modern NSOM Instrumentation and Different NSOM Operating Modes -- 4.10. Light Scattering Methods -- 4.10.1. The Measurement of Scattered Light: Determining the Aggregation Number of Micelles -- 4.10.2. Dynamic Light Scattering -- References and Recommended Reading -- End of Chapter Questions -- Chapter Overview -- 5.1. Supramolecular Machines -- 5.1.1. Model Dye System -- 5.1.2. Photorelaxation -- 5.1.3. Formation and Properties of the Exciton -- 5.2. Nanowires -- 5.2.1. Basic Quantum Mechanics of Nanowires -- 5.2.2. Conductivity -- 5.2.3. Nanowire Synthesis -- 5.2.4. Summary -- 5.3. Carbon Nanotubes
Text of Note
5.3.1. Carbon Nanotube Structure -- 5.3.2. Some Properties of Nanotubes -- 5.3.3. Methods for Growing Nanotubes -- 5.3.3.1. Arc Discharge -- 5.3.3.2. Laser Ablation -- 5.3.3.3. Chemical Vapor Deposition -- 5.3.4. Catalyst-Induced Growth Mechanism -- 5.4. Quantum Dots -- 5.4.1. Optical Properties -- 5.4.2. Synthesis of Quantum Dots -- 5.4.2.1. Precipitative Methods -- 5.4.2.2. Reactive Methods in High-Boiling-Point Solvents -- 5.4.2.3. Gas-Phase Synthesis of Semiconductor Nanoparticles -- 5.4.2.4. Synthesis in a Structured Medium -- 5.4.3. In Vivo Molecular and Cell Imaging -- 5.5. Langmuir-Blodgett Films -- 5.5.1. Langmuir Films -- 5.5.2. Langmuir-Blodgett Films -- 5.6. Polyelectrolytes -- 5.6.1. Electrostatic Self-Assembly -- 5.6.2. Charge Reversal and Interpenetration -- 5.6.3. Multilayer Formation -- 5.7. Model Phospholipid Bilayer Formation and Characterization -- 5.7.1. Black Lipid Membranes -- 5.7.2. Solid Supported Lipid Bilayers
Text of Note
5.7.3. Polymer Cushioned Phospholipid Bilayers -- 5.7.4. Fluorescence Recovery after Photobleaching -- 5.7.5. Fluorescence Resonant Energy Transfer -- 5.7.6. Fluorescence Interference Contrast Microscopy -- 5.8. Self-Assembled Monolayers -- 5.8.1. Thiols on Gold -- 5.8.2. Silanes on Glass -- 5.9. Patterning -- 5.9.1. Optical Lithography -- 5.9.2. Soft Lithography -- 5.9.3. Nanosphere Lithography -- 5.9.4. Patterning Using AFM -- 5.9.5. Summary -- 5.10. DNA and Lipid Microarrays -- 5.10.1. Using a DNA Microarray -- 5.10.2. Array Fabrication -- 5.10.3. Optimization -- 5.10.4. Applications -- 5.10.5. Arrays of Supported Bilayers and Microfluidic Platforms -- 5.10.6. Summary -- Cited References -- References and Recommended Reading -- End of Chapter Questions.
Text of Note
Machine generated contents note: 1.1. The Need for Nanoscience Education -- 1.2. The Nanoscale Dimension and the Scope of Nanoscience -- 1.3. Self-Assembly -- 1.4. Supramolecular Science -- 1.5. Sources of Information on Nanoscience -- Chapter Overview -- 2.1. Intermolecular Forces and Self-Assembly -- 2.1.1. Ion-Ion Interactions -- 2.1.2. Ion-Dipole Interactions -- 2.1.3. Dipole-Dipole Interactions -- 2.1.4. Interactions Involving Induced Dipoles -- 2.1.5. Dispersion Forces -- 2.1.6. Overlap Repulsion -- 2.1.7. Total Intermolecular Potentials -- 2.1.8. Hydrogen Bonds -- 2.1.9. The Hydrophobic Effect -- 2.2. Electrostatic Forces Between Surfaces: The Electrical Double Layer -- 2.2.1. The Electrical Double Layer -- 2.2.2. The Debye Length -- 2.2.3. Interactions Between Charged Surfaces in a Liquid -- 2.3. Intermolecular Forces and Aggregation -- 2.4. Simple Models Describing Electronic Structure
0
0
0
0
0
0
0
SUMMARY OR ABSTRACT
Text of Note
Assuming only a basic level of competency in physics, chemistry, and biology, the author focuses on the needs of the undergraduate curriculum, discussing important processes such as self-assembly, patterning, and nanolithography. His approach limits mathematical rigor in the presentation of key results and proofs, leaving it to the instructor's discretion to add more advanced details or emphasize particular areas of interest.
Text of Note
Provides the Background for Fundamental Understanding.
Text of Note
With a selective presentation of topics that makes it accessible for students who have taken introductory university science courses, Understanding Nano-materials is a training tool for the future workforce in nanotech development. This introductory textbook offers insights into the fundamental principles that govern the fabrication, characterization, and application of nanomaterials.
Text of Note
With its combination of discussion-based instruction and explanation of problem-solving skills, this textbook highlights interdisciplinary theory and enabling tools derived from chemistry, biology, physics, medicine, and engineering. It also includes real-world examples related to energy, the environment, and medicine. --Book Jacket.