edited by Ashutosh Tiwari, Rosario A. Gerhardt and Magdalena Szutkowska.
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
1 online resource (445 pages).
SERIES
Series Title
Advanced Material Series
GENERAL NOTES
Text of Note
4.8.2 Chemical Vapor Infiltration
Text of Note
Description based upon print version of record
CONTENTS NOTE
Text of Note
Cover; Title Page; Copyright Page; Contents; Preface; Part 1 Design, Processing, and Properties; 1 Development of Epitaxial Oxide Ceramics Nanomaterials Based on Chemical Strategies on Semiconductor Platforms; 1.1 Introduction; 1.2 Integration of Epitaxial Functional Oxides Nanomaterials on Silicon Entirely Performed by Chemical Solution Strategies; 1.2.1 Integration of Piezoelectric Quartz Thin Films on Silicon by Soft Chemistry; 1.2.2 Controllable Textures of Epitaxial Quartz Thin Films; 1.2.3 Integration of Functional Oxides by Quartz Templating; 1.2.4 Highly Textured ZnO Thin Films
Text of Note
1.3 Integration of Functional Oxides by Combining Soft Chemistry and Physical Techniques1.4 Conclusions; Acknowledgments; References; 2 Biphasic, Triphasic, and Multiphasic Calcium Orthophosphates; 2.1 Introduction; 2.2 General Definitions and Knowledge; 2.3 Various Types of Biphasic, Triphasic, and Multiphasic CaPO4; 2.4 Stability; 2.5 Preparation; 2.6 Properties; 2.7 Biomedical Applications; 2.8 Conclusions; References; 3 An Energy Efficient Processing Route for Advance Ceramic Composites Using Microwaves; 3.1 Introduction; 3.2 Historical Developments in Materials Processing by Microwaves
Text of Note
3.3 Introduction to Microwave Heating Process3.3.1 Microwave-materials Interaction Theory; 3.3.2 Microwave Heating Mechanisms; 3.4 Heating Methods by Microwaves; 3.4.1 Direct Microwave Heating; 3.4.2 Microwave Hybrid Heating; 3.4.3 Selective Heating; 3.4.4 Microwave-assisted Processing of Materials; 3.5 Advantages/Limitations of Microwave Material Processing; 3.5.1 Highly Energy Efficient Processing Method; 3.5.2 Better Quality of Processed Materials; 3.5.3 Cleaner Energy Processing; 3.5.4 Compact Processing Unit; 3.5.5 Restriction in Processing of All Varieties of Materials
Text of Note
3.5.6 Restrictions in Processing of Complex Shapes3.5.7 Non-uniformity in Heating; 3.5.8 Human Safety Issues; 3.6 Application of Microwave Heating in Composite Processing; 3.6.1 Recent Review of Work Carried Out in MMC/CMC/ Alloys/Ceramic Processing by Microwaves; 3.6.2 Microwave Melting/Casting of Metals/Metal Matrix Composites; 3.7 Future Prospectives; 3.8 Conclusion; References; Part 2 Ceramic Composites: Fundamental and Frontiers; 4 Continuous Fiber-reinforced Ceramic Matrix Composites; 4.1 Introduction; 4.2 Parts of a CMC; 4.2.1 Fibers; 4.2.2 Interphase; 4.2.3 Matrix