Introduction -- History of the Lattice Boltzmann method -- The Lattice Boltzmann method -- Multiphase LBM -- Color-gradient model -- Shan-Chen model -- Free-energy model -- Interface tracking model -- Comparison of models -- Units in this book and parameter conversion -- Appendix: Einstein summation convention -- Kronecker & function -- Lattice tensors -- Use of the Fortran code in the book -- Single-component multiphase Shan-Chen-type model -- Introduction -- "Equilibrium" velocity in the SC model -- Inter-particle forces in the SC SCMP LBM -- Typical equations of state -- Parameters in EOS -- Thermodynamic consistency -- The SCMP LBM EOS -- Incorporating other EOS into the SC model -- Analytical surface tension -- Inter-particle Force Model A -- Inter-particle Force Model B -- Contact angle -- Capillary rise -- Parallel flow and relative permeabilities -- Forcing term in the SC model -- Schemes co incorporate the body force -- Scheme overview -- Theoretical analysis -- Numerical results and discussion -- Multirange pseudopotential (Inter-particle Force Model B) -- Conclusions -- Appendix A: Analytical solution for layered multiphase flow in a channel -- Appendix B: FORTRAN code to simulate single component multiphase droplet contacting a wall, as shown in Figure 2.7(c) -- Shan and Chen-type multi-component multiphase models -- Multi-component multiphase SC LBM -- Fluid-fluid cohesion and fluid-solid adhesion -- Derivation of the pressure -- Pressure in popular papers (2D) -- Pressure in popular papers (3D) -- Determining Gc and the surface tension -- Contact angle -- Application of Young's equation to MCMP LBM -- Contact angle measurement -- Verification of proposed equation -- Flow through capillary tubes -- Layered two-phase flow in a 2D channel -- Pressure or velocity boundary conditions -- Boundary conditions for 2D simulations -- Boundary conditions for 3D simulations -- Displacement in a 3D porous medium -- Rothman-Keller multiphase Lattice Boltzmann model -- Introduction -- EK color-gradient model -- Theoretical analysis (Chapman-Enskog expansion) -- Discussion of above formulae -- Layered two-phase flow in a 2D channel -- Cases of two fluids with identical densities -- Cases of two fluids with different densities -- Interfacial tension and isotropy of the RK model -- Interfacial tension -- Isotropy -- Drainage and capillary filling -- MRT RK model -- Contact angle -- Spurious currents -- Tests of inlet/outlet boundary conditions -- Immiscible displacements in porous media -- Appendix A -- Appendix B -- Free-energy-based multiphase Lattice Boltzmann model -- Swift tree-energy based single-component multiphase LBM -- Derivation of the coefficients in the equilibrium distribution function -- Chapman-Enskog expansion -- Issue of Galilean invariance -- Phase separation -- Contact angle -- How to specify a desired contact angle -- Numerical verification -- Swift free-energy-based multi-component multiphase LBM -- Appendix -- Inamuro's multiphase Lattice Boltzmann model -- Introduction -- Inamuro's method -- Comment on the presentation -- Chapman-Enskog expansion analysis -- Cahn-Hilliard equation (equation for order parameter) -- Poisson equation -- Droplet collision -- Appendix -- He-Chen-Zhang multiphase Lattice Boltzmann model -- Introduction -- HCZ model -- Chapman-Enskog analysis -- N-S equations -- CH equation -- Surface tension and phase separation -- Layered two-phase flow in a channel -- Rayleigh-Taylor instability -- Contact angle -- Capillary rise -- Geometric scheme to specify the contact angle and its hysteresis -- Examples of droplet slipping in shear flows -- Oscillation of an initially ellipsoidal droplet -- Appendix A -- Appendix B: 2D code -- Appendix C: 3D code -- Axisymmetric multiphase HCZ model -- Introduction -- Methods -- Macroscopic governing equations -- Axisymmetric HCZ LBM (Fremnath and Abraham 2005a) -- MRT version of the axisymmetric LBM (McCracken and Abraham 2005) -- Axisymmetric boundary conditions -- The Laplace law -- Oscillation of an initially elbpsoidal droplet -- Cylindrical liquid column break -- Droplet collision -- Effect of gradient and Laplacian calculation -- Efiect of BGK and MRT -- A revised axisymmetric HCZ model (Huang et al. 2014) -- MRT collision -- Calculation of the surface tension -- Mass correction -- Bubble rise -- Numerical validation -- Surface-tension calculation effect -- Terminal bubble shape -- Wake behind the bubble -- Conclusion -- Appendix A: Chapman-Enskog analysis -- Preparation for derivation -- Mass comervaiion -- Momentum conservation -- CH equation -- Extensions of the HCZ model for high-density ratio two-phase flows -- Introduction -- Model I (lee and Lin 2005) -- Stress and potential form of intermolecular forcing terms -- Model description -- Implementation -- Directional derivative -- Droplet splashing on a thin liquid film -- Model II (Amaya-Bower and Lee 2010) -- Implementation -- Model III (Lee and Liu 2010) -- Model IV -- Numerical tests for different models -- A drop inside a box with periodic boundary conditions -- Layered two-phase flows in a channel -- Galilean invariance -- Conclusions. -- Appendix A: Analytical solutions for layered two-phase flow in a channel -- Appendix B: 2D code based on Amaya-Bower and Lee (2010) -- Axisymmetric high-density ratio two-phase LBMs (extension of the HCZ model) -- Introduction -- The model based on Lee and Lin (2005) -- The equilibrium distribution functions I -- The equilibrium distribution functions II -- Source terms -- Stress and potential form of intermolecular forcing terms -- Chapman-Enskog analysis -- Implementation -- Droplet splashing on a thin liquid film -- Head-on droplet collision -- Axisymmetric model based on Lee and Liu (2010) -- Implementation -- Head-on droplet collision -- Bubble rise