Emerging Technologies -- Moore's Law and the Power Crisis -- Novel Device Architectures -- High Mobility Channel Materials -- Two-Dimensional (2-D) Materials -- Atomistic Modeling -- References -- First-principles Calculations for Si Nanostructures -- Band Structure Calculations -- Si Ultrathin-body Structures -- Si Nanowires -- Strain Effects on Band Structures: From Bulk to Nanowire -- Tunneling Current Calculations Through Si/SiO₂/Si Structures -- Atomic Models of Si (001)/SiO₂/Si (001) Structures -- Current-voltage Characteristics -- SiO₂ Thickness Dependences -- References -- Quasi-ballistic Transport in Si Nanoscale MOSFETs -- A Picture of Quasi-ballistic Transport Simulated using Quantum-corrected Monte Carlo Simulation -- Device Structure and Simulation Method -- Scattering Rates for 3-D Electron Gas -- Ballistic Transport Limit -- Quasi-ballistic Transport -- Role of Elastic and Inelastic Phonon Scattering -- Multi-sub-band Monte Carlo Simulation Considering Quantum Confinement in Inversion Layers -- Scattering Rainy for 2-D Electron Gas -- Increase in Dac for SOI MOSFETs -- Simulated Electron Mobilities in Bulk Si and SOl MOSFETs -- Electrical Characteristics of Si DG-MOSFETs -- Extraction of Quasi-ballistic Transport Parameters in Si DG-MOSFETs -- Backscattering Coefficient -- Current Drive -- Gate and Drain Bias Dependences -- Quasi-ballistic Transport in Si Junctionless Transistors -- Device Structure and Simulation Conditions -- Influence of SR Scattering -- Influence of II Scattering -- Backscattering Coefficient -- Quasi-ballistic Transport in GAA-Si Nanowire MOSFETs -- Device Structure and 3DMSB-MC Method -- Scattering Rates for I-D Electron Gas -- ID - VG Characteristics and Backscattering Coefficient -- References -- Phonon Transport in Si Nanostructures -- Monte Carlo Simulation Method -- Phonon Dispersion Model -- Particle Simulation of Phonon Transport -- Free Flight and Scattering -- Simulation of Thermal Conductivity -- Thermal Conductivity of Bulk Silicon -- Thermal Conductivity of Silicon Thin Films -- Thermal conductivity of silicon nanowires -- Discussion on Boundary Scattering Effect -- Simulation of Heat Conduction in Devices -- Simulation Method -- Simple 1-D Structure -- FinFET Structure -- References -- Carrier Transport in High-mobility MOSFETs -- Quantum-corrected MC Simulation of High-mobility MOSFETs -- Device Structure and Band Structures of Materials -- Band Parameters of Si, Ge, and III-V Semiconductors -- Polar-optical Phonon (POP) Scattering in III-V Semiconductors -- Advantage of UTB Structure -- Drive Current of III-V, Ge and Si n-MOSFETs -- Source-drain Direct Tunneling in Ultrascaled MOSFETs -- Wigner Monte Carlo (WMC) Method -- Wigner Transport Formalism -- Relation with Quantum-corrected MC Method -- WMC Algorithm -- Description of Higher-order Quantized Subbands -- Application to Resonant-tunneling Diode -- Quantum Transport Simulation of III-V n-MOSFETs with Multi-subbaad WMC (MSB-WMC) Method -- Device Structure -- POP Scattering Rate for 2-D Electron Gas -- 1D - Vc Characteristics for InGaAs DG-MOSFETs -- Channel Length Dependence of SDT Leakage Current -- Effective Mass Dependence of Subthreshold Current Properties -- References -- Atomistic Simulations of Si, Ge and III-V Nanowire MOSFETs -- Phonon-limited Electron Mobility in Si Nanowires -- Band Structure Calculations -- Electron-phonon Interaction -- Electron Mobility -- Comparison of Phonon-limited Electron Mobilities between Si and. Ge nanowires -- Ballistic Performances of Si and In As Nanowire MOSFETs -- Band Structures -- Top-of-the-barrier Model -- ID - VG Characteristics -- Quantum Capacitances -- Power-delay-product -- Ballistic Performances of InSb, InAs, and GaSb Nanowire MOSFETs -- Band Structures -- ID - VG Characteristics -- Power-delay-product -- Atomistic Poisson Equation -- Analytical Expressions of Electron-phonon Interaction Hamiltonian Matrices -- References -- 2-D Materials and Devices -- 2-D Materials -- Fundamental Properties of Graphene, Silicene and Germanene -- Features of 2-D Materials as an FET Channel -- Graphene Nanostructures with a Bandgap -- Armchair-edged Graphene Nanoribbons (A-GNRs) -- Relaxation Effects of Edge Atoms -- Electrical Properties of A-GNR-FETs Under Ballistic Transport -- Bilayer Graphenes (BLGs) -- Graphene Nanomeshes (GNMs) -- Influence of Bandgap Opening on Ballistic Electron Transport in BLG and A-GNR-MOSFETs -- Small Bandgap Regime -- Large Bandgap Regime -- Silicene, Germanene and Graphene Nanoribbons -- Bandgap vs Ribbon Width -- Comparison of Band Structures -- Ballistic MOSFETs with Silicene, Germanene and Graphene nanoribbons -- ID - VG Characteristics -- Quantum Capacitances -- Channel Charge Density and Average Electron Velocity -- Source-drain Direct Tunneling (SDT) -- Electron Mobility Calculation for Graphene on Substrates -- Band Structure -- Scattering Mechanisms -- Carrier Degeneracy -- Electron Mobility Considering Surface Optical Phonon Scattering of Substrates -- Electron Mobility Considering Charged Impurity Scattering -- Germanane MOSFETs -- Atomic Model for Germanane Nanoribbon Structure -- Band Structure and Electron Effective Mass -- Electron Mobility -- Density-of-states for Carriers in Graphene
0
OTHER EDITION IN ANOTHER MEDIUM
International Standard Book Number
9781118871669
TOPICAL NAME USED AS SUBJECT
Carrier waves-- Mathematical models.
Metal oxide semiconductor field-effect transistors.