1. The climate system -- 1.1. Introduction : a definition of climate -- 1.2. Solar radiation and the energy budget of the Earth -- 1.3. Atmosphere and climate -- 1.3.1. Evolution of the atmosphere -- 1.3.2. Temperature structure -- 1.3.3. Pressure, composition, and temperature variations and dynamics -- 1.4. Ocean and climate -- 1.4.1. Heat storage and transport -- 1.4.2. Hydrological cycle -- 1.4.3. Carbon dioxide exchange with the oceans -- 1.4.4. Dynamical coupling between the atmosphere and the ocean -- 1.5. Radiative transfer in the atmosphere -- 1.6. The greenhouse effect -- 1.7. The ozone layer and ozone depletion -- 1.8. Climate observations -- 1.9. The stability of the climate -- 1.9.1. Data on past fluctuations -- 1.9.2. Origin of the observed fluctuations -- 1.10. Climate modelling -- 1.11. Climate on other planets -- Further reading -- Questions -- 2. Solar radiation and the energy budget of the Earth -- 2.1. Sun and climate -- 2.2. Solar physics -- 2.3. Source of the Sun's energy -- 2.4. The radiation laws -- 2.5. The solar constant -- 2.6. The solar spectrum -- 2.7. Solar observations -- 2.8. Absorption of solar radiation in the atmosphere -- 2.9. The balance between incoming solar and outgoing thermal radiation -- Further reading -- Questions.
Text of Note
10. Climate sensitivity and change -- 10.1. Introduction -- 10.2. Astronomical changes -- 10.2.1. The Milankovich cycles -- 10.2.2. The ice ages -- 10.2.3. Current changes -- 10.3. Variations in solar output -- 10.4. Changes in atmospheric composition -- 10.4.1. Greenhouse gases -- 10.4.2. Aerosols -- 10.4.3. Cloud and albedo variations -- 10.5. Ocean circulation variations -- 10.5.1. Changes in the thermohaline circulation -- 10.5.2. Rapid climate change -- 10.5.3. Ocean-atmosphere coupling : the El Ninõ-Southern Oscillation (ENSO) -- 10.6. Natural temperature fluctuations -- 10.7. Summary -- Further reading -- Questions -- 11. Climate models and predictions -- 11.1. Introduction -- 11.2. Current models and predictions -- 11.3. Multiple climate equilibria and sudden climate change -- 11.3.1. A simple radiative model -- 11.3.2. Box models of the ocean -- 11.3.3. Complex models -- 11.4. Problems of detection, attribution, and prediction -- Further reading -- Questions -- 12. Climate on other planets -- 12.1. Introduction -- 12.2. Mercury -- 12.3. Venus -- 12.4. Mars -- 12.5. Titan -- 12.6. The Jovian planet -- 12.7. Planets of other stars -- 12.8. Planets without stars -- Further reading -- Questions -- 13. Epilogue -- Index.
Text of Note
3. Atmosphere and climate -- 3.1. Introduction -- 3.2. Atmospheric composition -- 3.3. Units of pressure -- 3.4. The variation of pressure with height -- 3.5. Vertical temperature structure -- 3.5.1. Tropospheric temperature profile -- 3.5.2. Stratospheric temperature profile -- 3.5.3. Observed temperature profiles -- 3.6. The general circulation of the atmosphere -- Further reading -- Questions -- 4. Clouds and aerosols -- 4.1. t Introduction -- 4.2. Potential temperature and entropy -- 4.3. Potential energy and available potential energy -- 4.4. Humidity -- 4.5. Thermodynamics of moist air -- 4.6. Condensation processes and cloud formation -- 4.7. Growth of cloud droplets -- 4.8. Growth of ice crystals -- 4.9. Collision and coalescence -- 4.10. Aerosols -- Further reading -- Questions -- 5. Ocean and climate -- 5.1. Introduction -- 5.2. Ocean measurements -- 5.3. Composition of the ocean : salinity -- 5.4. Vertical and latitudinal structure of the ocean -- 5.5. The oceanic equation of state -- 5.6. The general circulation of the ocean -- 5.6.1. The Coriolis Force -- 5.6.2. Deep ocean dynamics : the thermohaline circulation -- 5.6.3. Near surface dynamics : Ekman transport and Sverdrup balance -- 5.7. Ocean circulation and climate change -- Further reading -- Questions.
Text of Note
9. Climate observations by remote sensing -- 9.1. Introduction -- 9.2. Ground-based measurements -- 9.3. Satellite measurements -- 9.4. Infrared instruments for remote sounding -- 9.4.1. Calibration -- 9.4.2. Modulation -- 9.4.3. Radiometer optics -- 9.4.4. Interference filters -- 9.4.5. Thermal infrared detectors -- 9.4.6. Photon detectors -- 9.4.7. Electronics and telemetry -- 9.5. Radiometric performance -- 9.5.1. Signal -- 9.5.2. Noise -- 9.5.3. Signal to noise ratio -- 9.6. Limb viewing instruments -- 9.7. Contemporary satellites and instruments : three examples -- 9.7.1. Weather satellites : the Geostationary Operational Environmental Satellite -- 9.7.2. Environmental satellites : ENVISAT -- 9.7.3. Research satellites : UARS and EOS -- 9.8. Applications of remote sensing to climate studies -- 9.8.1. Earth's radiation budget -- 9.8.2. Atmospheric temperature sounding -- 9.8.3. Atmospheric composition and chemistry -- 9.8.4. Clouds, aerosols, and polar stratospheric clouds -- 9.8.5. t Doppler wind measurements -- 9.8.6. t Surface properties -- 9.8.7. Detection of climate change -- 9.9. The future -- Further reading -- Questions.
0
0
0
0
SUMMARY OR ABSTRACT
Text of Note
"Elementary Climate Physics is an introductory text that covers climate-related topics at a level suitable for undergraduates in the physical sciences, and for graduate students and others requiring a quantitative introduction to the field. It aims to set out the basic mechanisms controlling climate, to apply relatively simple physics to the problem of climate change, and to provide a foundation for more advanced work. References to appropriate further reading at a higher level are provided, along with some sample examination questions."--BOOK JACKET.