• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History

عنوان
Nanometer-scale defect detection using polarized light /

پدید آورنده
Pierre Richard Dahoo, Philippe Pougnet, Abdelkhalak El Hami

موضوع
Materials-- Defects-- Analysis.

رده
TA409
.
D34
2016

کتابخانه
Center and Library of Islamic Studies in European Languages

محل استقرار
استان: Qom ـ شهر: Qom

Center and Library of Islamic Studies in European Languages

تماس با کتابخانه : 32910706-025

INTERNATIONAL STANDARD BOOK NUMBER

(Number (ISBN
1119329639
(Number (ISBN
1119329655
(Number (ISBN
9781119329633
(Number (ISBN
9781119329657
Erroneous ISBN
111932968X
Erroneous ISBN
1848219369
Erroneous ISBN
9781119329688
Erroneous ISBN
9781848219366

NATIONAL BIBLIOGRAPHY NUMBER

Number
dltt

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
Nanometer-scale defect detection using polarized light /
General Material Designation
[Book]
First Statement of Responsibility
Pierre Richard Dahoo, Philippe Pougnet, Abdelkhalak El Hami

PHYSICAL DESCRIPTION

Specific Material Designation and Extent of Item
1 online resource (xiv, 296 pages.)

SERIES

Series Title
Mechanical engineering and solid mechanics series
Series Title
Reliability of multiphysical systems set ;
Volume Designation
Volume 2

CONTENTS NOTE

Text of Note
Cover; Title Page; Copyright ; Contents; Preface; 1. Uncertainties; 1.1. Introduction; 1.2. The reliability based design approach; 1.2.1. The MC method; 1.2.2. The perturbation method; 1.2.3. The polynomial chaos method; 1.3. The design of experiments method; 1.3.1. Principle; 1.3.2. The Taguchi method; 1.4. The set approach; 1.4.1. The method of intervals; 1.4.2. Fuzzy logic based method; 1.5. Principal component analysis; 1.5.1. Description of the process; 1.5.2. Mathematical roots; 1.5.3. Interpretation of results; 1.6. Conclusions; 2. Reliability-based Design Optimization
Text of Note
2.1. Introduction2.2. Deterministic design optimization; 2.3. Reliability analysis; 2.3.1. Optimal conditions; 2.4. Reliability-based design optimization; 2.4.1. The objective function; 2.4.2. Total cost consideration; 2.4.3. The design variables; 2.4.4. Response of a system by RBDO; 2.4.5. Limit states; 2.4.6. Solution techniques; 2.5. Application: optimization of materials of an electronic circuit board; 2.5.1. Optimization problem; 2.5.2. Optimization and uncertainties; 2.5.3. Results analysis; 2.6. Conclusions; 3. The Wave-Particle Nature of Light; 3.1. Introduction
Text of Note
3.2. The optical wave theory of light according to Huyghens and Fresnel3.2.1. The three postulates of wave optics; 3.2.2. Luminous power and energy; 3.2.3. The monochromatic wave; 3.3. The electromagnetic wave according to Maxwell's theory; 3.3.1. The Maxwell equations; 3.3.2. The wave equation according to the Coulomb's gauge; 3.3.3. The wave equation according to the Lorenz's gauge; 3.4. The quantum theory of light; 3.4.1. The annihilation and creation operators of the harmonic oscillator; 3.4.2. The quantization of the electromagnetic field and the potential vector
Text of Note
3.4.3. Field modes in the second quantization4. The Polarization States of Light; 4.1. Introduction; 4.2. The polarization of light by the matrix method; 4.2.1. The Jones representation of polarization; 4.2.2. The Stokes and Muller representation of polarization; 4.3. Other methods to represent polarization; 4.3.1. The Poincaré description of polarization; 4.3.2. The quantum description of polarization; 4.4. Conclusions; 5. Interaction of Light and Matter; 5.1. Introduction; 5.2. Classical models; 5.2.1. The Drude model; 5.2.2. The Sellmeir and Lorentz models
Text of Note
5.3. Quantum models for light and matter5.3.1. The quantum description of matter; 5.3.2. Jaynes-Cummings model; 5.4. Semiclassical models; 5.4.1. Tauc-Lorentz model; 5.4.2. Cody-Lorentz model; 5.5. Conclusions; 6. Experimentation and Theoretical Models; 6.1. Introduction; 6.2. The laser source of polarized light; 6.2.1. Principle of operation of a laser; 6.2.2. The specificities of light from a laser; 6.3. Laser-induced fluorescence; 6.3.1. Principle of the method; 6.3.2. Description of the experimental setup; 6.4. The DR method; 6.4.1. Principle of the method
0
8
8
8
8

SUMMARY OR ABSTRACT

Text of Note
This book describes experimental and theoretical methods that are implemented within the framework of fundamental research to better understand physical and chemical processes at the nanoscale that are responsible for the remarkable properties of materials used in innovative technological devices. It presents optical techniques based on polarized light allowing the characterization of defects in materials or in their interfaces that are likely to impact performance. It also describes ways of knowing mechanical properties of nanomaterials by using theoretical models and analysis of experimental results and their uncertainties

OTHER EDITION IN ANOTHER MEDIUM

International Standard Book Number
1848219369

TOPICAL NAME USED AS SUBJECT

Materials-- Defects-- Analysis.

(SUBJECT CATEGORY (Provisional

TEC-- 009000
TEC-- 035000

DEWEY DECIMAL CLASSIFICATION

Number
620
.
1126
Edition
23

LIBRARY OF CONGRESS CLASSIFICATION

Class number
TA409
Book number
.
D34
2016

PERSONAL NAME - PRIMARY RESPONSIBILITY

Dahoo, Pierre Richard

CORPORATE BODY NAME - ALTERNATIVE RESPONSIBILITY

Ohio Library and Information Network.

ORIGINATING SOURCE

Date of Transaction
20161005074554.1
Cataloguing Rules (Descriptive Conventions))
pn

ELECTRONIC LOCATION AND ACCESS

Electronic name
 مطالعه متن کتاب 

[Book]

Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival