Hydrophilic interaction liquid chromatography (HILIC) and advanced applications /
General Material Designation
[Book]
First Statement of Responsibility
edited by Perry G. Wang, Weixuan He
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
xx, 589 pages :
Other Physical Details
illustrations ;
Dimensions
24 cm
SERIES
Series Title
Chromatographic science series ;
Volume Designation
103
INTERNAL BIBLIOGRAPHIES/INDEXES NOTE
Text of Note
Includes bibliographical references and index
CONTENTS NOTE
Text of Note
Nettleship -- 22.1.Introduction to Glycoproteins -- 22.1.1.Importance of Glycosylation in Biological Systems and How Variation Can Lead to Disease -- 22.1.2.Types of Glycosylation and Glycan Patterns -- 22.1.3.Challenges in Glycosylation Analysis by MS -- 22.1.3.1.Mass Spectrometry -- 22.1.3.2.MALDI-MS -- 22.1.3.3.ESI-MS -- 22.2.Characterization of Glycoproteins -- 22.2.1.Glycoprotein Enrichment from Complex Solutions -- 22.2.1.1.Lectin Affinity Chromatography -- 22.2.1.2.Capillary Electrophoresis -- 22.2.1.3.Other Separation Techniques -- 22.2.2.Glycopeptide Enrichment -- 22.2.2.1.Hydrophilic Interaction Liquid Chromatography -- 22.2.2.2.Lectin Affinity Chromatography -- 22.2.2.3.Hydrazine Chemistry -- 22.2.2.4.Ion-Pairing Normal-Phase Chromatography -- 22.2.2.5.Others -- 22.2.3.Tandem Methods -- 22.3.Examples of Glycoprotein Characterization Using HILIC -- 22.3.1.Glycoprotein Enrichment -- 22.3.2.Characterization of Glycoforms -- 22.3.3.Characterization of Glycosylation Site Occupancy -- 22.3.4.Full Characterization of Glycoproteins -- 22.4.Summary -- Acknowledgments -- References -- 23.Analysis of Protein Glycosylation and Phosphorylation Using HILIC-MS / Peter Roepstorff -- 23.1.Introduction -- 23.2.Background -- 23.3.Analysis of Glycans and Glycopeptides Using HILIC -- 23.3.1.HILIC SPE for Sample Preparation of Glycans and Glycopeptides -- 23.3.1.1.Selective Enrichment of Glycopeptides from Purified/Semi-Purified Glycoprotein -- 23.3.1.2.Enrichment and Desalting of Released Glycans -- 23.3.1.3.Quantitative Desalting of Glycopeptides and Glycans Using HILIC SPE -- 23.3.1.4.Enrichment of Glycopeptides from Complex Mixture Using HILIC SPE -- 23.3.2.HILIC Separation of Glycans and Glycopeptides -- 23.3.2.1.HILIC Separation of Glycans with Off-Line MS Detection -- 23.3.2.2.HILIC Separation of Glycopeptides with Off-Line MS Detection -- 23.3.2.3.Online HILIC-MS of Glycans -- 23.3.2.4.Online HILIC-MS of Glycopeptides -- 23.4.Analysis of Phosphopeptides Using HILIC -- 23.4.1.Phosphopeptide Enrichment Methods -- 23.4.1.1.Immobilized Metal Affinity Chromatography -- 23.4.1.2.Strong Cation Exchange --
Text of Note
Note continued: 10.4.3.Effect of TFA Percentage on the HILIC Method -- 10.4.4.Effect of Column Temperature on the HILIC Method -- 10.5.Plasma Method -- 10.6.Collection of CSF Samples from Rat Brain by Microdialysis -- 10.7.Method Development for the Analysis of CSF -- References -- 11.Polar Functional Groups for HILIC Method / Zhigang Hao -- 11.1.Introduction -- 11.2.Ionic Functional Groups in HILIC Separation -- 11.2.1.Effect of Stationary Phase Composition -- 11.2.2.Effect of Buffer Concentration (Ionic Strength) -- 11.2.3.Effect of Column Temperature -- 11.3.Nonionic Polar Functional Groups in HILIC Separation -- 11.3.1.Effect of Mobile Phase Composition -- 11.3.2.Effect of Column Temperature -- Acknowledgments -- References -- 12.Analysis of Pharmaceutical Impurities Using Hydrophilic Interaction Liquid Chromatography / David Q. Liu -- 12.1.Introduction -- 12.2.Trace Analysis of Genotoxic Impurities -- 12.2.1.Alkyl Sulfonates -- 12.2.2.Alkyl Halides -- 12.3.Analysis of Polar Impurities in Nonpolar APIs or Intermediates -- 12.3.1.Imidazole -- 12.3.2.(3S)-3-Morpholinemethanol -- 12.3.3.Acetamide -- 12.3.4.Organic Acids -- 12.4.Purity and Impurity Analysis of Polar APIs and Intermediates -- 12.4.1.5-Fluorouracil in 5-Fluorocytosine -- 12.4.2.Guanine in Acyclovir -- 12.4.3.Epirubicin -- 12.4.4.Chiral Compounds -- 12.4.5.Carbamates -- 12.4.6.Sodium Cromoglicate -- 12.4.7.Cytosine -- 12.5.Counterion Analysis -- 12.6.Conclusions and Future Prospects -- Acknowledgments -- References -- 13.Fast In-Process Method for the Determination of loversol and Related Polar Compounds by Hydrophilic Interaction Chromatography (HILIC) and UPLC / Michael Matchett -- 13.1.Overview of HILIC/UPLC -- 13.1.1.HILIC and HILIC Stationary Phases -- 13.1.2.Overview of UPLC and HILIC-UPLC Applications -- 13.2.Case Study: Fast In-Process Analysis of Ioversol by HILIC-UPLC -- 13.2.1.Introduction -- 13.2.2.Experimental -- 13.2.3.Results and Discussion -- 13.2.3.1.Univariate Method Development -- 13.2.3.2.Multivariate Method Optimization -- 13.2.4.Conclusions -- References -- 14.Retention Behavior of Hydrazine Derivatives in HILIC Mode / Kaspars Kokums -- 14.1.Introduction -- 14.2.Effect of Organic Solvent -- 14.3.Effect of Acetonitrile Content on Retention with Different Stationary Phases -- 14.4.Effect of pH -- 14.5.Effect of Buffer Concentration with Various Stationary Phases -- 14.6.Temperature Effect with Various Stationary Phases -- 14.7.Application Results and Method Validation -- 14.8.Summary -- Acknowledgments -- References -- 15.HILIC Retention Behavior and Method Development for Highly Polar Basic Compounds Used in Pharmaceutical Synthesis / Min Liu -- 15.1.Introduction -- 15.2.HILIC Method for Purity and Stability Monitoring of 4-AMP -- 15.2.1.Method Development -- 15.2.1.1.HILIC-Column Screening -- 15.2.1.2.Mobile-Phase Components -- 15.2.1.3.Column Temperature -- 15.2.2.Method Validation -- 15.3.HILIC-CLND Method for Hydrazine Residues in an Intermediate -- 15.3.1.Method Development -- 15.3.1.1.Alcohol as a Weak Eluent -- 15.3.1.2.Combined ZIC and HILIC Modes -- 15.3.1.3.Type of Acid Additive -- 15.3.1.4.Type of Buffer and Ionic Strength -- 15.3.2.Method Validation -- References -- 16.Retention of Polar Acidic and Basic Drugs by HILIC / Aamer Roshanali Khatri -- 16.1.Introduction -- 16.2.Analysis of Pharmaceutical Ingredients -- 16.2.1.Basic Amines in Cough-Cold Formulations -- 16.2.2.MFH and Related Compounds in Tablets -- 16.2.3.BT in Ophthalmic Solution -- 16.2.4.SCG in Ophthalmic Solution -- 16.3.Retention Mechanism -- 16.3.1.Effect of Organic Solvent -- 16.3.1.1.Choice of Organic Solvent -- 16.3.1.2.Use of Alternate Solvent -- 16.3.2.Mobile-Phase pH and Ion Exchange -- 16.3.3.Ionic Strength -- 16.3.4.Stationary Phase -- 16.3.5.Diluent and Injection Volume -- 16.3.6.Validation of Methods -- 16.4.Advantages -- 16.5.Conclusion -- References -- 17.Retention and Selectivity of Polar Stationary Phases for Hydrophilic Interaction Chromatography / Yong Guo -- 17.1.Introduction -- 17.2.Polar Stationary Phases for HILIC -- 17.3.Selectivity of Various Polar Stationary Phases in HILIC -- 17.4.Retentivity of Various Polar Stationary Phases in HILIC -- 17.5.Factors Affecting Retention and Selectivity in HILIC -- 17.6.Separation of Positional Isomers in HILIC -- 17.7.Conclusions -- Acknowledgment -- References -- 18.HILIC-MS/MS for the Determination of Polar Bioactive Substances: Representative Applications in the Fields of Pharmacokinetics and Metabolic Profiling / Yannis Dotsikas -- 18.1.Introduction -- 18.2.Application of HILIC-MS/MS in the Field of Pharmacokinetics-Bioequivalence Studies -- 18.3.Biocquivalence Study of Carvedilol -- 18.4.Pharmacokinetics Studies of Donepezil, Loratadine, and Cetirizine -- 18.5.Determination of Gabapentin in Human Plasma Using HILIC with Tandem Mass Spectrometry -- 18.6.Pharmacokinetic Study of the Peptide Drug Taspoglutide -- 18.7.HILIC-ESI-MS/MS Method for the Quantitation of Polar Metabolites of Acrylamide in Human Urine -- 18.8.HILIC-MS/MS Technique for Sensitive Monitoring of the Changes of Urinary Estrogen Conjugates -- 18.9.Combination of HILIC-MS and RPLC-MS for Profiling Polar Urine Metabolites -- 18.10.Quantification of Methylmalonic Acid and Homocystein in Serum and Urine with HILIC-MS -- References -- 19.Method Development and Analysis of Mono-and Diphosphorylated Nucleotides by HILIC HPLC-ESI-MS / Kevin A. Schug -- 19.1.Introduction -- 19.2.Experimental Section -- 19.2.1.Chemicals and Materials -- 19.2.2.Instrumentation -- 19.2.3.Physiochemical Parameters -- 19.2.4.Method Validation -- 19.3.Results and Discussion -- 19.3.1.Optimal pH -- 19.3.2.Column Chemistries -- 19.3.3.Gradient Method Development -- 19.3.4.Solubility Issues -- 19.3.5.Separation Results -- 19.3.6.Method Validation -- 19.4.Concluding Remarks -- Acknowledgments -- References -- 20.Hydrophilic Interaction Liquid Chromatography-Based Enrichment Protocol Coupled to Mass Spectrometry for Glycoproteome Analysis / Cosima Damiana Calvano -- 20.1.Introduction -- 20.2.Protein Modifications: Glycosylation -- 20.3.Troubles in Glycoproteome Analysis -- 20.4.Enrichment Methods for Glycoproteome -- 20.5.HILIC: Mechanism and Material -- 20.6.HILIC: From Glycomics to Glycoproteomics -- 20.7.Glycoproteomics by HILIC and Mass Spectrometry -- 20.8.Application to Biomarker Discovery -- References -- 21.Development and Application of Methods for Separation of Carbohydrates by Hydrophilic Interaction Liquid Chromatography / Goran Karlsson -- 21.1.Introduction -- 21.1.1.Carbohydrates -- 21.1.2.Techniques for Separation and Detection of Carbohydrates -- 21.1.3.HILIC in the Separation of Carbohydrates -- 21.2.Development and Optimization of HILIC Methods for Separating and Analyzing Carbohydrates -- 21.2.1.Use of Different Stationary Phases -- 21.2.2.Mobile-Phase Composition -- 21.2.3.Temperature and Other Variables -- 21.2.4.Sample Preparation Strategy -- 21.2.5.Detection of Carbohydrates -- 21.2.6.Short Outline for the Development of an HILIC Method -- 21.3.HILIC Applications for the Separation of Carbohydrates -- 21.3.1.HILIC Separation of Mono-, Di-, and Oligosaccharides by Cyclodextrin Columns in Combination with UV and RI Detection -- 21.3.2.HILIC Separation by an Amide-80 Column and MS Analysis of Carbohydrates from Plants -- 21.3.3.HILIC Separation by a ZIC-HILIC Column and MS Analysis of Tryptic Glycopeptides from Human Immunoglobulin -- 21.3.4.Analysis of 2-Aminobenzoic Acid-Derivatized Oligosaccharides by an NH2 Column and Fluorescence Detection -- 21.3.5.Separation of Glucosinolates by a ZIC-HILIC Column and Detection by Absorbance -- 21.3.6.Separation of GAGs by an Amide-80 Column Combined with MS Analysis -- References -- 22.Hydrophilic Interaction Liquid Chromatography in the Characterization of Glycoproteins / Joanne E.
Text of Note
Note continued: 23.4.1.3.Titanium Dioxide -- 23.4.1.4.Other Phosphopeptide Enrichment Methods -- 23.4.2.HILIC in Multidimentional LC-MS -- 23.4.3.HILIC in Phosphorylation Analysis -- 23.4.3.1.Early Applications of HILIC in Phosphoprotein/Peptide Analysis -- 23.4.3.2.Application in Phosphoproteomics -- 23.4.4.Electrostatic Repulsion Hydrophilic Interaction Chromatography -- 23.4.5.Multiphosphopeptide Enrichment Prior to HILIC Fractionation -- 23.5.Future Prospects -- Acknowledgment