Reliability and risk models setting reliability requirements /
General Material Designation
[Book]
First Statement of Responsibility
Michael T. Todinov
EDITION STATEMENT
Edition Statement
Second edition
Edition Statement
Second edition
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
1 online resource.
SERIES
Series Title
Wiley series in quality & reliability engineering
INTERNAL BIBLIOGRAPHIES/INDEXES NOTE
Text of Note
Includes bibliographical references and index
CONTENTS NOTE
Text of Note
Title Page; Table of Contents; Series Preface; Preface; 1 Failure Modes; 1.1 Failure Modes; 1.2 Series and Parallel Arrangement of the Components in a Reliability Network; 1.3 Building Reliability Networks: Difference between a Physical and Logical Arrangement; 1.4 Complex Reliability Networks Which Cannot Be Presented as a Combination of Series and Parallel Arrangements; 1.5 Drawbacks of the Traditional Representation of the Reliability Block Diagrams; 2 Basic Concepts; 2.1 Reliability (Survival) Function, Cumulative Distribution and Probability Density Function of the Times to Failure
Text of Note
2.2 Random Events in Reliability and Risk Modelling2.3 Statistically Dependent Events and Conditional Probability in Reliability and Risk Modelling; 2.4 Total Probability Theorem in Reliability and Risk Modelling. Reliability of Systems with Complex Reliability Networks; 2.5 Reliability and Risk Modelling Using Bayesian Transform and Bayesian Updating; 3 Common Reliability and Risk Models and Their Applications; 3.1 General Framework for Reliability and Risk Analysis Based on Controlling Random Variables; 3.2 Binomial Model; 3.3 Homogeneous Poisson Process and Poisson Distribution
Text of Note
3.4 Negative Exponential Distribution3.5 Hazard Rate; 3.6 Mean Time to Failure; 3.7 Gamma Distribution; 3.8 Uncertainty Associated with the MTTF; 3.9 Mean Time between Failures; 3.10 Problems with the MTTF and MTBF Reliability Measures; 3.11 BX% Life; 3.12 Minimum Failure-Free Operation Period; 3.13 Availability; 3.14 Uniform Distribution Model; 3.15 Normal (Gaussian) Distribution Model; 3.16 Log-Normal Distribution Model; 3.17 Weibull Distribution Model of the Time to Failure; 3.18 Extreme Value Distribution Model; 3.19 Reliability Bathtub Curve
Text of Note
4 Reliability and Risk Models Based on Distribution Mixtures4.1 Distribution of a Property from Multiple Sources; 4.2 Variance of a Property from Multiple Sources; 4.3 Variance Upper Bound Theorem; 4.4 Applications of the Variance Upper Bound Theorem; 5 Building Reliability and Risk Models; 5.1 General Rules for Reliability Data Analysis; 5.2 Probability Plotting; 5.3 Estimating Model Parameters Using the Method of Maximum Likelihood; 5.4 Estimating the Parameters of a Three-Parameter Power Law; 6 Load-Strength (Demand-Capacity) Models; 6.1 A General Reliability Model
Text of Note
6.2 The Load-Strength Interference Model6.3 Load-Strength (Demand-Capacity) Integrals; 6.4 Evaluating the Load-Strength Integral Using Numerical Methods; 6.5 Normally Distributed and Statistically Independent Load and Strength; 6.6 Reliability and Risk Analysis Based on the Load-Strength Interference Approach; 7 Overstress Reliability Integral and Damage Factorisation Law; 7.1 Reliability Associated with Overstress Failure Mechanisms; 7.2 Damage Factorisation Law; 8 Solving Reliability and Risk Models Using a Monte Carlo Simulation; 8.1 Monte Carlo Simulation Algorithms
0
8
8
8
8
SUMMARY OR ABSTRACT
Text of Note
A comprehensively updated and reorganized new edition. The updates include comparative methods for improving reliability; methods for optimal allocation of limited resources to achieve a maximum risk reduction; methods for improving reliability at no extra cost and building reliability networks for engineering systems. Includes: -A unique set of 46 generic principles for reducing technical risk -Monte Carlo simulation algorithms for improving reliability and reducing risk -Methods for setting reliability requirements based on the cost of failure -New reliability measures based on a minimal separation of random events on a time interval -Overstress reliability integral for determining the time to failure caused by overstress failure modes -A powerful equation for determining the probability of failure controlled by defects in loaded components with complex shape -Comparative methods for improving reliability which do not require reliability data -Optimal allocation of limited resources to achieve a maximum risk reduction -Improving system reliability based solely on a permutation of interchangeable components
OTHER EDITION IN ANOTHER MEDIUM
Title
Reliability and risk models setting reliability requirements