Includes bibliographical references (p. 185-187) and indexes.
CONTENTS NOTE
Text of Note
Part I. Basic Material On SL2(R), Discrete Subgroups and the Upper-Half Plane: -- 1. Prerequisites and notation -- 2. Review of SL2(R), differential operators, convolution -- 3. Action of G on X, discrete subgroups of G, fundamental domains -- 4. The unit disc model -- Part II. Automorphic Forms and Cusp Forms: -- 5. Growth conditions, automorphic forms -- 6. Poincare series -- 7. Constant term:the fundamental estimate -- 8. Finite dimensionality of the space of automorphic forms of a given type -- 9. Convolution operators on cuspidal functions -- Part III. Eisenstein Series: -- 10. Definition and convergence of Eisenstein series -- 11. Analytic continuation of the Eisenstein series -- 12. Eisenstein series and automorphic forms orthogonal to cusp forms -- Part IV. Spectral Decomposition and Representations: -- 13.Spectral decomposition of L2(G\G)m with respect to C -- 14. Generalities on representations of G -- 15. Representations of SL2(R) -- 16. Spectral decomposition of L2(G\SL2(R)): the discrete spectrum -- 17. Spectral decomposition of L2(G\SL2(R)): the continuous spectrum -- 18. Concluding remarks.