1. Splines in Hilbert Spaces -- 2. Reproducing Mappings and Characterization of Splines -- 3. General Convergence Techniques and Error Estimates for Interpolating Splines -- 4. Splines in Subspaces -- 5. Interpolating DM-Splines -- 6. Splines on Manifolds -- 7. Vector Splines -- 8. Tensor and Blending Splines -- 9. Optimal Approximation of Linear Operators -- 10. Classification of Spline Objects -- 11. ??-Approximations and Data Compression -- 12. Algorithms for Optimal Smoothing Parameter -- Appendices -- Theorems from Functional Analysis Used in This Book -- A.1 Convergence in Hilbert Space -- A.2 Theorems on Linear Operators -- A.3 Sobolev Spaces in Domain -- On Software Investigations in Splines -- B.1 One-Dimensional Case -- B.2 Multi-Dimensional Case.
0
SUMMARY OR ABSTRACT
Text of Note
Th e vari a t i on al s p li ne t heo ry w h ic h orig i na t es from th e w ell-kn own p ap er b y J. e . Hollid a y ( 1957) i s t od a y a we ll- deve lo pe d fi eld in a p pr o x - mat i o n t he o ry . T he ge ne ra l d efinition of s p l i nes in t he Hilb er t s pace , - i st ence , uniquen e s s , and ch ar a c t eriz a tion t he o re ms w ere obt ain ed a b o ut 35 ye a r s ago b y M . A t t ei a , P . J . Laur en t , a n d P . M. An selon e , bu t in r e cent y e a r s important n e w r esult s h a v e b e en ob t ain ed in th e a bst ract va r i a t i o n a l s p l i ne theor y .