Understanding and modeling Förster-type resonance energy transfer (FRET) :
General Material Designation
[Book]
Other Title Information
introduction to FRET.
First Statement of Responsibility
Alexander Govorov, Pedro Ludwig Hernández Martínez, Hilmi Volkan Demir
Volume Designation
Vol. 1 /
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
1 online resource (vi, 54 pages) :
Other Physical Details
color illustrations.
SERIES
Series Title
SpringerBriefs in applied sciences and technology, Nanoscience and nanotechnology,
ISSN of Series
2191-530X
INTERNAL BIBLIOGRAPHIES/INDEXES NOTE
Text of Note
Includes bibliographical references
CONTENTS NOTE
Text of Note
1 Short History of Energy Transfer Theory Before Förster, At The Time of Förster, and After Förster; 1.1 Brief Review of Scientific Achievements Before Förster Theory; 1.2 Förster Energy Transfer Theory; 1.3 Developments After Förster; References; 2 Energy Transfer Review; 2.1 Introduction; 2.2 Classical Description of Energy Transfer; 2.3 Quantum Mechanical Description of Energy Transfer; 2.4 Radiative and Nonradiative Energy Transfer; 2.4.1 Radiative Energy Transfer; 2.4.2 Nonradiative Energy Transfer; References; 3 Förster-Type Nonradiative Energy Transfer Models
Text of Note
3.1 Nonradiative Energy Transfer3.2 Dexter Energy Transfer, Charge Transfer, Exciton Diffusion and Dissociation; 3.3 Selection Rules for Enery Transfer; 3.3.1 Dipole-Dipole Mechanism; 3.3.2 Exchange Mechanism; References; 4 Background Theory; 4.1 Quantum Cofinement; 4.1.1 Three Dimensional Cartesian Coordinates; 4.1.2 The Box Potential; 4.1.2.1 The Rectangular Box Potential; 4.1.2.2 The Cubic Box Potential; 4.1.3 Three Dimensional Spherical Coordinates; 4.1.3.1 Free Particle in Spherical Coordinates; 4.1.3.2 The Spherical Well; 4.1.4 Three Dimensional Cylindrical Coordinates
Text of Note
4.2 Fermi's Golden RuleReferences; 5 Theoretical Approaches: Exciton Theory, Coulomb Interactions and Fluctuation-Dissipation Theorem; 5.1 Electron-Hole Interaction (Exciton); 5.1.1 Frenkel Excitons; 5.1.2 Mott-Wannier Excitons; 5.2 Coulombic Interaction; 5.3 Exciton in Quantum Dots: Single-Particle Quantization Energy and Coulomb Interaction; 5.4 Fermi's Golden Rule and Fluctuation Dissipation Theorem; References; Förster Resonance Energy Transfer: Dipole-Dipole Mechanism; Dexter Energy Transfer: Exchange Mechanism