Contents note continued: 1.5.3.Modification of the Electrode Properties by Metal Adatoms -- 1.5.4.Binary and Multimetallic Electrodes -- 1.5.5.Effect of the Particle Size and Carbon Support -- 1.5.6.Platinum-Based Nanoparticles and Nanocrystals -- 1.6.Survey of the Results on the Electro-oxidation of Several Alcohols -- 1.6.1.The Electro-oxidation of Methanol -- 1.6.2.The electro-oxidation of Ethanol -- 1.6.3.The Electro-oxidation of Polyols -- 1.7.Summary -- References -- ch. 2 Nanoalloy Electrocatalysts for Alcohol Oxidation Reactions / Chuan-Jian Zhong -- 2.1.Introduction -- 2.2.Preparation of Nanoalloy Catalysts -- 2.3.Electrocatalytic Activity of Bimetallic Catalysts -- 2.3.1.AuPt Alloy and Core-Shell Nanoparticle Catalysts -- 2.3.2.PdCo Alloy Nanoparticle Catalysts -- 2.4.Phase and Surface Properties of Bimetallic Nanoparticle Catalysts -- 2.4.1.Bimetallic Phase Properties -- 2.4.2.Bimetallic Surface Properties -- 2.5.Summary -- Acknowledgements -- References --
Text of Note
Contents note continued: 6.1.2.Opportunities for Enzymes at the Cathode of Fuel Cells -- 6.1.3.Limitations in Assembling Energy Devices with Enzymes -- 6.2.Strategies for Wiring Enzyme Electrocatalysts to Electrodes -- 6.2.1.Cofactor Supply to NAD(P)+-Dependent Dehydrogenases -- 6.2.2.Redox Hydrogels -- 6.2.3.Tethers or Conductive Linkers -- 6.2.4.Direct Electron Transfer -- 6.2.5.Wiring Whole Cells for Microbial Fuel Cells: Mediated and Direct Electron Transfer -- 6.3.Examples of Enzyme Electrocatalysis -- 6.3.1.Methanol and Ethanol -- 6.3.2.Sugars and Carbohydrates -- 6.3.3.Glycerol -- 6.4.Microbial Fuel Cells -- 6.5.Summary -- Acknowledgements -- References -- ch. 7 Challenges and Perspectives of Nanocatalysts in Alcohol-Fuelled Direct Oxidation Fuel Cells / L. Li -- 7.1.Challenges with Current Direct Oxidation Fuel Cell Catalysts -- 7.1.1.CO Poisoning -- 7.1.2.Oxygen Reduction Catalysts -- 7.1.3.Carbon Corrosion -- 7.1.4.Platinum Dissolution and Growth -- 7.1.5.Ruthenium Dissolution -- 7.2.Approaches to Catalyst Performance Enhancement -- 7.2.1.Development of Composite Catalysts with Noble Metals -- 7.2.2.Novel Carbon Materials as Catalysts and Substrates -- 7.2.3.Non-carbon-Based Catalyst Substrates -- 7.3.Summary -- References
Text of Note
Contents note continued: ch. 3 Theoretical Studies of Formic Acid Oxidation / Timo Jacob -- 3.1.Introduction -- 3.2.Methods -- 3.3.Results and Discussion -- 3.3.1.Gas-Phase Reaction -- 3.3.2.Influence of Water Solvation -- 3.3.3.Eley---Rideal Mechanisms -- 3.3.4.Kinetics Analysis -- 3.3.5.Role of Co-adsorbed CO and OH -- 3.4.Summary -- Acknowledgements -- References -- ch. 4 Gold Leaf Based Electrocatalysts / Yi Ding -- 4.1.Introduction -- 4.2.Nanoporous Gold Leaf -- 4.2.1.History and Formation Mechanism of NPG -- 4.2.2.Structural Properties of NPG Leaf -- 4.2.3.Electrocatalysis of NPG Leaf -- 4.3.Platinum-Plated Nanoporous Gold Leaf -- 4.3.1.Plating Methods -- 4.3.2.Structure and Stability of Pt-NPG Leaf -- 4.3.3.Electrocatalysis of Pt-NPG Leaf -- 4.3.4.Fuel Cell Performance of Pt-NPG Leaf -- 4.4.NPG-Based Electrocatalysts for Formic Acid Oxidation -- 4.5.Summary -- Acknowledgements -- References --
Text of Note
Contents note continued: ch. 5 Nanocatalysts for Direct Borohydride Oxidation in Alkaline Media / Mario Simoesg -- 5.1.Introduction -- 5.2.Thermodynamics and Mechanism of Sodium Borohydride Oxidation -- 5.3.Experimental Details -- 5.3.1.Materials -- 5.3.2.Synthesis of Catalysts by the "Water-in-Oil" Microemulsion Method -- 5.3.3.Electrochemical Measurements -- 5.3.4.TEM, XRD and XPS Characterization Methods -- 5.4.Characterization of the Nanocatalysts -- 5.5.Evaluation of the Catalytic Activity and Selectivity towards Sodium Borohydride Electro-oxidation -- 5.5.1.Electrochemical Methods -- 5.5.2.Evaluation of the BOR on Monometallic Nanocatalysts -- 5.5.3.Evaluation of the BOR on Pd-Based Bimetallic Catalysts -- 5.5.4.Evaluation of the BOR on Pt-Based Multimetallic Catalysts -- 5.6.Summary -- Acknowledgements -- References -- ch. 6 Bioelectrocatalysis in Direct Alcohol Fuel Cells / K. A. Vincent -- 6.1.Introduction -- 6.1.1.Opportunities for Enzymes at the Anode of Fuel Cells --
Text of Note
Machine generated contents note: ch. 1 Electrocatalysis of Alcohol Oxidation Reactions at Platinum Group Metals / Christophe Coutanceau -- 1.1.Introduction -- 1.2.Thermodynamics and Kinetics of Alcohol Oxidation Reactions -- 1.2.1.Thermodynamic Data -- 1.2.2.Kinetics Problems -- 1.3.Preparation and Physicochemical Characterization of Platinum-Based Nanocatalysts -- 1.3.1.Synthesis by Chemical Methods -- 1.3.2.Synthesis by Electrochemical Deposition -- 1.3.3.Synthesis by Plasma-Enhanced PVD -- 1.3.4.Physicochemical Characterizations -- 1.4.Experimental Methods for the Elucidation of Reaction Mechanisms -- 1.4.1.Cyclic Voltammetry and CO Stripping -- 1.4.2.Infrared Reflectance Spectroscopy -- 1.4.3.Differential Electrochemical Mass Spectrometry -- 1.4.4.Chromatographic Techniques -- 1.5.Main Parameters of the Electrode Material Controlling the Electro-reactivity of Alcohols -- 1.5.1.Chemical Nature of the Electrode Material -- 1.5.2.Effect of Crystallographic Structure --