a review for physics, chemistry and engineering students
EDITION STATEMENT
Edition Statement
2nd edition
.PUBLICATION, DISTRIBUTION, ETC
Place of Publication, Distribution, etc.
[S.l.] :
Name of Publisher, Distributor, etc.
Elsevier,
Date of Publication, Distribution, etc.
2013
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
269 pages:
Other Physical Details
illustrated;
Dimensions
24 cm
SERIES
Series Title
Elsevier insights
CONTENTS NOTE
Text of Note
Half Title; Title Page; Copyright; Contents; To the Reader; Preface to Second Edition; Mathematical Thinking; 1.1 The NCAA March Madness Problem; 1.2 Gauss and the Arithmetic Series; 1.3 The Pythagorean Theorem; 1.4 Torus Area and Volume; 1.5 Einstein's Velocity Addition Law; 1.6 The Birthday Problem; 1.7 Fibonacci Numbers and the Golden Ratio; 1.8 sqrtpi in the Gaussian Integral; 1.9 Function Equal to Its Derivative; 1.10 Stirling's Approximation for N!; 1.11 Potential and Kinetic Energies; 1.12 Riemann Zeta Function and Prime Numbers; 1.13 How to Solve It; 1.13.1 Understanding the Problem
Text of Note
1.13.2 Devising a Plan1.13.3 Carrying Out the Plan; 1.13.4 Looking Back; 1.14 A Note on Mathematical Rigor; Numbers; 2.1 Integers; 2.2 Primes; 2.3 Divisibility; 2.4 Rational Numbers; 2.5 Exponential Notation; 2.6 Powers of 10; 2.7 Binary Number System; 2.8 Infinity; Algebra; 3.1 Symbolic Variables; 3.2 Legal and Illegal Algebraic Manipulations; 3.3 Factor-Label Method; 3.4 Powers and Roots; 3.5 Logarithms; 3.6 The Quadratic Formula; 3.7 Imagining i; 3.8 Factorials, Permutations and Combinations; 3.9 The Binomial Theorem; 3.10 e is for Euler; Trigonometry; 4.1 What Use is Trigonometry?
Text of Note
4.2 Geometry of Triangles4.3 The Pythagorean Theorem; 4.4 π in the Sky; 4.5 Sine and Cosine; 4.6 Tangent and Secant; 4.7 Trigonometry in the Complex Plane; 4.8 de Moivre's Theorem; 4.9 Euler's Theorem; 4.10 Hyperbolic Functions; Analytic Geometry; 5.1 Functions and Graphs; 5.2 Linear Functions; 5.3 Conic Sections; 5.4 Conic Sections in Polar Coordinates; Calculus; 6.1 A Little Road Trip; 6.2 A Speedboat Ride; 6.3 Differential and Integral Calculus; 6.4 Basic Formulas of Differential Calculus; 6.5 More on Derivatives; 6.6 Indefinite Integrals; 6.7 Techniques of Integration
Text of Note
6.8 Curvature, Maxima and Minima6.9 The Gamma Function; 6.10 Gaussian and Error Functions; 6.11 Numerical Integration; Series and Integrals; 7.1 Some Elementary Series; 7.2 Power Series; 7.3 Convergence of Series; 7.4 Taylor Series; 7.5 Bernoulli and Euler Numbers; 7.6 L'Hôpital's Rule; 7.7 Fourier Series; 7.8 Dirac Deltafunction; 7.9 Fourier Integrals; 7.10 Generalized Fourier Expansions; 7.11 Asymptotic Series; Differential Equations; 8.1 First-Order Differential Equations; 8.2 Numerical Solutions; 8.3 AC Circuits; 8.4 Second-Order Differential Equations; 8.5 Some Examples from Physics
Text of Note
8.6 Boundary Conditions8.7 Series Solutions; 8.8 Bessel Functions; 8.9 Second Solution; 8.10 Eigenvalue Problems; Matrix Algebra; 9.1 Matrix Multiplication; 9.2 Further Properties of Matrices; 9.3 Determinants; 9.4 Matrix Inverse; 9.5 Wronskian Determinant; 9.6 Special Matrices; 9.7 Similarity Transformations; 9.8 Matrix Eigenvalue Problems; 9.9 Diagonalization of Matrices; 9.10 Four-Vectors and Minkowski Spacetime; Group Theory; 10.1 Introduction; 10.2 Symmetry Operations; 10.3 Mathematical Theory of Groups; 10.4 Representations of Groups; 10.5 Group Characters
0
8
8
8
8
SUMMARY OR ABSTRACT
Text of Note
This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly), which is needed to succeed in science courses. The focus is on math actually used in physics, chemistry and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student's ability to think in mathematical terms and to apply quantitative methods to scientific problems. Detailed Illustrations and links to reference material online help further comprehension. The second edition features new problems, illustrations, and features expanded chapters on matrix algebra and differential equations. Use of proven pedagogical techniques developed during the author's 40 years of teaching experienceNew practice problems and exercises to enhance comprehensionCoverage of fairly advanced topics, including vector and matrix algebra, partial differential equations, special functions and complex variables