1. Preliminaries. Introduction to Algebraic Analysis -- 2. Basic equation. Logarithms and antilogarithms -- 3. Logarithms and antilogarithms of higher order -- 4. Logarithms and antilogarithms of operators having either finite nullity or finite deficiency -- 5. Reduction theorems -- 6. Multiplicative case -- 7. Leibniz algebras -- 8. Linear equations in Leibniz algebras -- 9. Trigonometric mappings and elements -- 10. Semigroup properties of solutions to linear equations -- 11. Operator ehD -- 12. Power mappings. Polylogarithmic functions. Nonlinear equations -- 13. Smooth logarithms and antilogarithms -- 14. Riemann-Hilbert type problems in Leibniz algebras -- 15. Periodic problems -- 16. Equations with multiplicative involutions of order N -- 17. Remarks on the fractional calculus -- Appendix. Functional shifts. By Z. Binderman -- A1. Functions of a right invertible operator -- A2. Functional shifts -- A3. Isomorphisms of spaces of functional shifts -- A4. Functional shifts induced by operators of complex differentiation -- A5. Euler-Maclaurin type formulae -- A6. Differential and integral properties -- References -- Authors Index -- List of Symbols.