1. Semiconductor Laser Diodes -- 1-1. The Diode -- 1-2. Basic Laser Device -- 1-3. Heterostructures -- 1-4. Gain and Index Guiding -- 1-5. Semiconductor Microlasers -- 1-6. Output Power-Current Characteristics -- 1-7. Frequency Spectrum -- 1-8. Transverse Mode Structure -- 1-9. Phenomenological Gain Model -- 2. Basic Concepts -- 2-1. Elementary Aspects of Band Structures -- 2-2. Units -- 2-3. Fermi-Dirac Distributions -- 2-4. Quantum Confinement -- 2-5. Slowly-Varying Maxwell Equations -- 2-6. Quantum Mechanics of the Semiconductor Medium -- 3. Free-Carrier Theory -- 3-1. Free-Carrier Equations of Motion -- 3-2. Quasiequilibrium Approximation -- 3-3. Semiconductor Gain -- 3-4. Temperature Dependence of Gain -- 3-5. Gain Saturation -- 3-6. Carrier-Induced Refractive Index -- 4. Coulomb Effects -- 4-1. Many-Body Hamiltonian -- 4-2. Plasma Screening -- 4-3. Semiconductor Bloch Equations -- 4-4. Bandgap Renormalization -- 4-5. Interband Coulomb Effects -- 4-6. Collision Processes -- 5. Many-Body Gain -- 5-1. Pad'e Approximation -- 5-2. Bulk Semiconductors -- 5-3. Quantum Wells -- 6. Band Mixing and Strain in Quantum Wells -- 6-1. Bloch Theorem -- 6-2. Electronic States at k = 0 -- 6-3. k?p Theory -- 6-4. Luttinger Hamiltonian -- 6-5. Quantum Wells -- 6-6. Strained Quantum Wells -- 6-7. Bandstructure Calculation -- 6-8. GaAs-AlGaAs Quantum Wells -- 6-9. InGaAs-AlGaAs Strained Quantum Wells -- 6-10. InGaAs-InP -- 6-11. InGaP-InAlGaP -- 7. Semiclassical Laser Theory -- 7-1. Multimode Maxwell Equations -- 7-2. Single-Mode Semiconductor Laser Theory -- 7-3. Single-Mode Linear-Stability Analysis -- 7-4. Injection Locking -- 7-5. Coupled Resonators -- 7-6. Laser Arrays -- 8. Multimode Operation -- 8 -1. Multiwave Mixing -- 8-2. Short-Cavity Sidemode Interactions -- 8-3. Third-Order Multimode Equations -- 8-4. Single-Mode Operation -- 8-5. Two-Mode Operation -- 8-6. Three-Mode Operation and Mode Locking -- 8-7. Higher-Order Operation -- 9. Quantum Theory of the Laser -- 9-1. Single-Mode Field Quantization -- 9-2. Spontaneous Emission -- 9-3. Quantum Langevin Equations -- 9-4. Semiconductor Langevin Equations -- 9-5. Power Spectra and Laser Linewidth -- 10. Propagation Effects -- 10-1. Longitudinal Field Dependence -- 10-2. Lateral Field Distributions -- 10-3. Diffraction Effects -- 10-4. Filamentation in Amplifiers -- 10-5. Unstable Resonator Lateral Mode Stability -- 11. Beyond Quasiequilibrium Theory -- 11-1. Nonequilibrium Laser Theory -- 11-2. Numerical Results for VCSELs -- 11-3. Pulse Propagation in Semiconductor Amplifiers -- Appendix A: Two-Level Systems and Rate Equations -- Appendix B: k?p Theory -- Appendix C: Envelope Function Approach -- Appendix D: Strain Effects -- Appendix E: Some Langevin Goodies.
0
SUMMARY OR ABSTRACT
Text of Note
Semiconductor-Laser Physics discusses the underlying physics and operational principles of semiconductor lasers. The optical and electronic properties of the semiconductor medium are analyzed in detail, including quantum confinement and gain engineering effects. A semiclassical and a quantum version of the laser theory are presented, including an analysis of single- and multimode operation, instabilities, laser arrays, unstable resonators, and microcavity lasers.