An Introduction to Fusion Energy for Students of Science and Engineering.
EDITION STATEMENT
Edition Statement
1st ed.
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
1 online resource (309 pages)
CONTENTS NOTE
Text of Note
Contents -- Preface -- PART I CONTEXT, PHENOMENA, PROCESSES -- 1. Introduction -- 1.1 Matter and Energy -- 1.2 Matter and Energy Accounting -- 1.3 Component Energies -- 1.4 Fusion Fuels -- 1.5 Fusion in Nature -- Problems -- 2. Physical Characterizations -- 2.1 Particles and Forces -- 2.2 Thermal Kinetics -- 2.3 Distribution Parameters -- 2.4 Power and Reaction Rates -- 2.5 Sigma-V Parameter -- Problems -- 3. Charged Particle Scattering -- 3.1 Collisional Processes -- 3.2 Differential Cross Section -- 3.3 Debye Length -- 3.4 Scattering Limit -- 3.5 Bremsstrahlung Radiation -- Problems -- PART II CONFINEMENT, TRANSPORT, BURN -- 4. Fusion Confinement -- 4.1 Necessity of Confinement -- 4.2 Material Confinement -- 4.3 Gravitational Confinement -- 4.4 Electrostatic Confinement -- 4.5 Inertial Confinement -- 4.6 Magnetic Confinement -- Problems -- 5. Individual Charge Trajectories -- 5.1 Equation of Motion -- 5.2 Homogeneous Electric Field -- 5.3 Homogeneous Magnetic Field -- 5.4 Combined Electric and Magnetic Field -- 5.6 Curvature Drift -- 5.7 Axial Field Variations -- 5.8 Invariant of Motion -- 5.9 Cyclotron Radiation -- Problems -- 6. Bulk Particle Transport -- 6.1 Particle Motion -- 6.2 Continuity and Diffusion -- 6.3 Particle-Fluid Connection -- 6.4 Particle Kinetic Description -- 6.5 Global Particle Leakage -- Problems -- 7. Fusion Burn -- 7.1 Elementary D-T Burn -- 7.2 Comprehensive D-T Burn -- 7.3 Identical Particle Burn -- 7.4 D-D Burn Modes -- 7.5 D-3He Fusion -- 7.6 Spin Polarized Fusion -- 7.7 Catalyzed Fusion -- Problems -- PART III ENERGETICS, CONCEPTS, SYSTEMS -- 8. Fusion Reator Energetics -- 8.1 System Energy Balance -- 8.2 Plasma Heating -- 8.3 Lawson Criterion -- 8.4 Ignition and Break-Even -- Problems -- 9. Open Magnetic Confinement -- 9.1 Magnetic and Kinetic Pressure -- 9.2 Magnetic Flux Surfaces -- 9.3 Magnetic Mirror.
Text of Note
9.4 Instabilities in Mirror Fields -- 9.5 Classical Mirror Confinement -- 9.6 Magnetic Pinch -- Problems -- 10. Closed Magnetic Systems -- 10.1 Toroidal Fields -- 10.2 Tokamak Features -- 10.3 Particle Trapping -- 10.4 Tokamak Equilibrium -- 10.5 Stability of Tokamaks -- 10.7 Alternate Closed Configurations -- Problems -- 11. Inertial Confinement Fusion -- 11.1 Basic Concepts -- 11.2 Rho-R Parameter -- 11.3 Energy Balance -- 11.4 Compression Energy -- 11.5 Beams and Targets -- 11.6 Indirect Drive -- 11.7 General Layout and Operation -- Problems -- 12. Low Temperature Fusion -- 12.1 Low and High Temperature Reactions -- 12.2 Compound Decay Reaction -- 12.3 Energy Viability -- 12.4 Muon Catalysis Efficiency -- 12.5 Muon Catalyzed Reactor Concept -- 12.6 Cold Fusion: A Comment -- Problems -- PART IV COMPONENTS, INTEGRATION, EXTENSIONS -- 13. Fusion Reactor Blanket -- 13.1 Blanket Concept -- 13.2 First Wall Loading -- 13.3 Plasma-Wall Interactions -- 13.4 Wall Impurity Effects -- 13.5 ICF Chamber Protection -- 13.6 MDT Channel -- 13.7 Blanket Neutronics and Energetics -- 13.8 Radioactivation -- Problems -- 14. Tritium Fuel Dynamics -- 14.1 Tritium Properties -- 14.2 Continuous D-T Burn -- 14.3 Pulsed D-T Burn -- 14.4 Self-sufficient Tritium Breeder -- 14.5 Tritium Dynamics in the Blanket -- 14.6 External Tritium Stockpile Dynamics -- Problems -- 15. Fusion-Fission Integration -- 15.1 Conceptual Description -- 15.2 Energy Multiplication -- 15.3 Hybrid Power Flow -- 15.4 Hybrid Fuel Breeding -- 15.5 Satellite Extension -- Problems -- 16. Concepts and Systems -- 16.1 Direct Energy Conversion -- 16.2 Electromagnetic Coupling -- 16.3 Some Emerging Concepts -- PART V APPENDICES -- Appendix A Fundamental Data and Relations -- Appendix B Chart of the Light Nuclides -- Appendix C Sigma-V and Reaction Tabulations -- Bibliography -- Index.
0
8
SUMMARY OR ABSTRACT
Text of Note
This textbook accommodates the two divergent developmental paths which have become solidly established in the field of fusion energy: the process of sequential tokamak development toward a prototype and the need for a more fundamental and integrative research approach before costly design choices are made. Emphasis is placed on the development of physically coherent and mathematically clear characterizations of the scientific and technological foundations of fusion energy which are specifically suitable for a first course on the subject. Of interest, therefore, are selected aspects of nuclear physics, electromagnetics, plasma physics, reaction dynamics, materials science, and engineering systems, all brought together to form an integrated perspective on nuclear fusion and its practical utilization.
OTHER EDITION IN ANOTHER MEDIUM
Title
Principles Of Fusion Energy : An Introduction to Fusion Energy for Students of Science and Engineering