Subwavelength and nanometer diameter optical fiber
.PUBLICATION, DISTRIBUTION, ETC
Place of Publication, Distribution, etc.
Hangzhou
Name of Publisher, Distributor, etc.
Zhejiang University Press ;Heidelberg ;New York :Springer
Date of Publication, Distribution, etc.
c2010
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
1 online resource )ix, 228 p.( , ill.
SERIES
Series Title
Advanced topics in science and technology in China,5991-9186.
GENERAL NOTES
Text of Note
Title from PDF title page.
Text of Note
Includes bibliographical references and index.
CONTENTS NOTE
Text of Note
Cover31; -- Preface -- Table of Contents31; -- 1 Introduction -- 1.1 A Brief History of Micro- and Nanofibers -- 1.2 Concepts of MNFs and the Scope of this Book -- References -- 2 Optical Waveguiding Properties of MNFs: Theory and Numerical Simulations -- 2.1 Basic Guiding Properties of Ideal MNFs -- 2.1.1 Mathematic Model -- 2.1.2 Single-mode Condition and Fundamental Modes -- 2.1.3 Fractional Power Inside the Core and Effective Diameter -- 2.1.4 Group Velocity and Waveguide Dispersion -- 2.2 Theory of MNFs with Microscopic Nonuniformities -- 2.2.1 Basic Equations -- 2.2.2 Conventional and Adiabatic Perturbation Theory -- 2.2.3 Transmission Loss Caused by a Weak and Smooth Nonuniformity -- 2.3 Theory of MNF Tapers -- 2.3.1 Semiclassical Solution of the Wave Equation in the Adiabatic Approximation and Expression of Radiation Loss -- 2.3.2 Optics of Light Propagation Along the Adiabatic MNF Tapers -- 2.3.3 Example of a Conical MNF Taper -- 2.3.4 Example of a Biconical MNF Taper -- 2.3.5 Example of an MNF Taper with Distributed Radiation Loss -- 2.4 The Thinnest MNF Optical Waveguide -- 2.5 Evanescent Coupling between Parallel MNFs: 3D-FDTD Simulation -- 2.5.1 Model for FDTD Simulation -- 2.5.2 Evanescent Coupling between two Identical Silica MNFs -- 2.5.3 Evanescent Coupling between two Silica MNFs with Different Diameters -- 2.5.4 Evanescent Coupling between a Silica MNF and a Tellurite MNF -- 2.6 Endface Output Patterns -- 2.6.1 MNFs with Flat Endfaces -- 2.6.2 MNFs with Angled Endfaces -- 2.6.3 MNFs with Spherical and Tapered Endfaces -- 2.7 MNF Interferometers and Resonators -- 2.7.1 MNF Mach-Zehnder and Sagnac Interferometers -- 2.7.2 MNF Loop Resonators -- 2.7.3 MNF Coil Resonators -- References -- 3 Fabrication of MNFs -- 3.1 Taper Drawing Techniques -- 3.2 Taper-drawing Fabrication of Glass MNFs -- 3.2.1 Taper Grawing MNFs Rom Glass Fibers -- 3.2.2 Drawing MNFs Directly from Bulk Glasses -- 3.3 Drawing Polymer MNFs from Solutions -- References -- 4 Properties of MNFs: Experimental Investigations -- 4.1 Micro/Nanomanipulation and Mechanical Properties of MNFs -- 4.1.1 Visibility of MNFs -- 4.1.2 MNF Manipulation -- 4.1.3 Tensile Strengths of MNFs -- 4.2 Optical Properties -- 4.2.1 Optical Losses -- 4.2.2 Effect of the Substrate -- References -- 5 MNF-based Photonic Components and Devices -- 5.1 Linear Waveguides and Waveguide Bends -- 5.1.1 Linear Waveguides -- 5.1.2 Waveguide Bends -- 5.2 Micro-couplers, Mach-Zehnder and Sagnac Interferometers -- 5.2.1 Micro-couplers -- 5.2.2 Mach-Zehnder Interferometers -- 5.2.3 Sagnac Interferometers -- 5.3 MNF Loop and Coil Resonators -- 5.3.1 MNF Loop Resonator )MLR( Fabricated by Macro-Manipulation -- 5.3.2 Knot MLR Fabricated by Micro-Manipulation -- 5.3.3 Experimental Demonstration of MCR -- 5.4 MNF Filters -- 5.4.1 Short-Pass Filters -- 5.4.2 Add-Drop Filters -- 5.5 MNF Lasers -- 5.5.1 Modeling MNF Ring Lasers -- 5.5.2 Numerical Simulation of Er3+ and Yb3+ Doped MNF Ring Lasers -- 5.5.3 Er3+ and Yb3+ Codoped MNF Ring Lasers -- 5.5.4 Evanescent-Wave-Coupled MNF Dye Lasers -- References -- 6 Micro/nanofiber Optical Sensors -- 6.1 Introduction -- 6.2 Application of a Straight MNF for Sensing -- 6.2.1 Microfluidic Refractive Index MNF Sensor -- 6.2.2 Hydrogen MNF Sensor -- 6.2.3 Molecular Absorption MNF Sensor -- 6.2.4 Humidity and.