رفتار جابجایی گاؤس-هانشن باریکه ی نوری کاوشگر بازتابیده از مرز یک کاواک مورد مطالعه قرار گرفت. این کاواک شامل دو لایه ی دی الکتریک است که در بین آنها لایه ای شامل سامانه مولکولی سه ترازی شکل قرار گرفته است. سامانه مولکولی یک همپارش HCN⟶HNC با گشتاور دوقطبی های دائمی غیر صفر انتخاب شد. اثر شفافیت القایی الکترومغناطیسی ناشی از حضور گشتاور دوقطبی های دائمی در مولکول برای گذارهای (1+1) و (1+2) فوتونی مورد بررسی قرار گرفت. پاسخ نوری محیط مولکولی بواسطه ی همدوسی کوانتومی بوجود آمده توسط گشتاور دوقطبی های دائمی غیر صفر، دستخوش تغییر شد. جابجایی های گاؤس-هانشن باریکه ی نور کاوشگر بازتابیده شده، به میزان زیادی تحت تأثیر ضریب شکست محیط مولکولی داخل کاواک قرار دارد. همچنین اثر شدت میدان تزویج کننده ی همدوس بر روی جذب، پاشندگی، ضریب گروه و جابجایی گاؤس-هانشن باریکه ی کاوشگر بازتابیده مورد بحث قرار گرفت. همچنین، مشاهده شد که خصوصیات آماری گذار (1+2) فوتون EIT به نامیزانی میدان کاوشگر، فرکانس رابی تزویج کننده همدوس و زمان وابسته است. میانگین زمانی جمعیت در حالت پایا در طی فرآیند جذب، مورد مطالعه قرار گرفت. تغییرات جذب میدان کاوشگر در طی گذر زمان به کمک روش پرش کوانتومی بررسی شد. تغییرات جمعیت در طی دوره ی زمانی مورد مطالعه قرار گرفت. جابجایی گاؤس-هانشن باریکه ی کاوشگر بازتابیده با تغییر ضریب شکست مؤثر محیط اندرکنشی در طی زمان دستخوش تغییرات می شود. تعداد فوتون های میدان کاوشگر در گذشت زمان طبق روش تابع موج مونت کارلو دچار افت و خیزهایی می شود. بیشینه جابجایی گاؤس-هانشن متعلق به دو مرحله است. مرحله ی اول زمانی است که تمامی ذرات مولکول گاز وارد کاواک شده اند و مرحله ی دوم مربوط به زمانی است که ذرات کاواک را طی نموده و در آستانه ی خروج از کاواک قرار گرفته اند. از جابجایی گاؤس-هانشن به عنوان عامل سنجش در حسگر نوری پیشنهادی استفاده شد. آستانه ی تشخیص، آستانه ی کمّی و حد خطیت متناظر با حسگر نوری پیشنهادی مورد مطالعه قرار گرفتند
Behavior of the Goos-Hänchen shifts of the reflected probe light beam at the interface of a three-layer cavity with a three-level Λ-type molecular system is theoretically investigated. Molecular system is HCN⟶HNC isomerization with nonzero permanent dipole moments (PDMs). The effect of electromagnetically induced transparency (EIT) induced by PDMs in molecule is studied for (1+1)- and (1+2)-transition processes. Thus, the optical response of the medium modifies by the quantum coherence due to nonzero PDMs. Moreover, reflected probe light field for both transitions experiences superluminal light propagation. Goos-Hänchen shifts of the reflected probe light beam are substantially modified by the refractive index of the interactive medium as well as incident angle. The effect of coherent coupling field intensity on absorption, dispersion, group index, and the Goos-Hänchen shifts of the reflected probe beam is also discussed. In addition, it is shown that the statistical properties of (1+2) photon EIT are dependent on probe detuning, coupling Rabi-frequency and time. Time averaged steady state populations during absorption mechanism were investigated. Variations of absorption of the probe field are studied during a period with quantum jump approach. Population variation during a period was studied. Goos-Hänchen shifts of the reflected probe light beam are substantially modified by variations of the effective refractive index of the interactive medium through the time. Number of probe field’s photon has fluctuated over the time according to the Monte Carlo wave function method. Maximum Goos-Hänchen shifts belong to two stages. First stage is the time when the whole gas particles are entered the cavity and second stage is the time when they are commenced to leave the cavity. We exert Goos-Hänchen shifts as the sensing probe for the proposed sensor. The limit of detection, and limit of quantitation, and limit of linearity of the proposed sensor are investigated.Conclusion: We investigate (1+1)- and (1+2)-transition processes in a three-level Λ-type molecular system with nonzero PDMs. Analytical relations of absorption and dispersion spectra, group index, and Goos-Hänchen shifts are presented for a weak probe light beam. Analysis shows that as the magnitude of m in m-photon transition induced by the coherent coupling field is increased, the EIT transparency window is narrowed. The slope of dispersion is negative for both transitions. However, we observe minimum slope and magnitude for (1+1)-transition, while (1+2)-transition with negative sign of difference in PDMs have maximum ones. We realize that group velocity of probe field for both transitions, are greater than the speed of light in vacuum, so we have superluminal light propagation in the cavity. Maximum group velocity belongs to (1+2)-transition with negative sign of difference in PDMs. In addition, Goos-Hänchen shifts and group index spectra are both negative, which are confirm the results. Dispersion-absorption, refractive index dispersion spectra, and Goos-Hänchen shifts of the reflected probe light beam profile depend on Rabi-frequency of coherent coupling field. In addition, in constant coherent coupling field any variations in refractive index of medium could affect on Goos-Hänchen shifts. Increasing coupling Rabi frequency corresponding to enhance the number of coupling photons. It makes the population prepare in level |├ 1⟩ no population inversion occure. As the coupling Rabi frequency is increasing, the width probability curve is growth. It means that, not only do the probe photons with Δ_p=0 experience transparency, some other probe photons with Δ_p≠0 associate in EIT window as well. In Modeling of Optical Sensors based on the Goos-Hänchen Shifts, variation of effective refractive index of the intracavity medium, number of probe field’s photon is varied. As the two kinds of molecular gas particles entere the cavity, propagation and leave the cavity result in effective refractive index is not constant. Observation of maximum Goos-Hanchen shifts during a period indicates that molecular gas particles are existing and moving inside the cavity. Therefore, sensing is occurring. By injecting two different gases within the cavity, with the aim of material rate curve versus maximum photon count, LOD (60), LOQ (78), and LOL (136) is measured. Coefficient of determination is closed to one so, prediction is performed with high accuracy. As the number of second gas is increased, maximum photon count is raised ang LOD is growth.With the aim of quantum jump approach, it will be observed that in modeling of optical sensors based on the Goos-Hänchen shifts, varaying the effective refractive index of intracavity medium changing the number of probe field photons. Hence, as the molecular particles enter the cavity completely and before starts to leave the cavity, maximum Goos-Hänchen shifts arises. Occurrence maximum Goos-Hänchen shifts during time lapse indicate the presence of molecular particles and their movements inside the cavity. So, identification process of optical sensor is confirmed
Modeling of Optical Sensors based on the Goos-Hänchen Shifts