تبریز : دانشگاه تبریز ، دانشکده ریاضی، گروه ریاضی محض - آنالیز
۱۰۳ ص
چاپی
فاقد چکیده فارسی
دکتری
ریاضی محض - آنالیز
۱۳۸۶/۰۸/۲۵
تبریز : دانشگاه تبریز ، دانشکده ریاضی، گروه ریاضی محض - آنالیز
.In chapter (۱), we review the history of the frame theory and give some necessary definitions and theorems about different kinds of frames. In chapter (۲), we introduce the concept of pg-frames and g-Banach frames for banach spaces, and qg-Riesz bases for dual of Banach spaces. Pg-frame is a simultaneous generalization of pframe and g-frames. We show that by using of pg-frames a bounded linear functional on a Banach space can be represented as a unconditional convergent series. We also show that every separable Banach space has a g-Banach frame with bounds equal to ۱. In chapter (۳), by introducing the continuous g-frames, we try to find equivalent conditions for Riesz type continuous g-frames. We prove that under some conditions one can remove an element of a continuous g-frame such that the remaining set is also a continuous g-frame. In chapter (۴), we introduce an invariant analytic orthonormalization procedure and use this procedure to obtain orthonormal sets via frames of translates and Gabor frames