عملگرهای مشتق سه گانه و همومورفیسمهای سه گانه از جبرهای لی کامل
Triple derivations and triple homomorphisms of perfect Lie algebras
/شکوفه خادم نعمت اللهی
: علوم ریاضی
، ۱۳۹۷
، راشدی
۴۸ص
چاپی - الکترونیکی
کارشناسی ارشد
ریاضی محض گرایش جبر
۱۳۹۷/۱۱/۱۴
تبریز
Let L, K be two Lie algebras over the field F. An F-linear mapping f : L K is called a triple derivation if x, y, z L, f([x, [y, z]]) = [f(x), [y, z]] + [x, [f(y), z]] + [x, [y, f(z)]]. It will be proved that, if char F = 2 and L is a perfect Lie algebra with zero center, then every triple derivation L is derivation and every triple derivation of Der(L) is an inner derivation. Also, f : L K is called a triple homomorphism if x, y, z L, f([x, [y, z]]) = [f(x), [f(y), f(z)]]. It is clear that homomophisms, anti-homomorphisms and sum of homomorphisms and anti-homomorphisms are triple homomorphisms. It will be proved that, under certain assumptions, these are all triple homomorphisms
Triple derivations and triple homomorphisms of perfect Lie algebras