ارائه روشی جهت طراحی کنترلکنندهی مدلغزشی مرتبه کسری برای کلاسی از سیستمهای دینامیکی همراه با نامعینی
TK
/شبنم پاشایی
: مهندسی برق و کامپیوتر
، ۱۳۹۴
، راشدی
چاپی
کارشناسی ارشد
مهندسی برق-کنترل
۱۳۹۴/۰۶/۳۱
تبریز
در این پایاننامه نوع جدیدی از استراتژی کنترلی مبتنی بر ترکیب علم حسابان مرتبه کسری و کنترلکننده مدلغزشی ترمینال، تحت عنوان کنترلکننده مدلغزشی ترمینال مرتبه کسری برای پایدارسازی کلاسی از سیستمهای دینامیکی غیرخطی مرتبه کسری دارای نامعینیها و اغتشاشات خارجی سازگار پیشنهاد شده است .به منظور طراحی کنترلکننده مدلغزشی ترمینال زمان محدود، ابتدا یک سطح سوئیچینگ ترمینال مرتبه کسری مناسب پیشنهاد شده، سپس با استفاده از تئوری مدلغزشی و قضیه پایداری لیاپانوف، قانون کنترلی مرتبه کسری مقاوم به نحوی طراحی میشود که شرایط لغزش در زمان محدودی وجود داشته و متغیرهای حالت سیستم بتوانند در زمان محدودی به نقاط تعادل مطلوب برسند .با استفاده از قضیه پایداری لیاپانوف، پایداری زمان محدود و مقاوم بودن روش کنترلی پیشنهاد شده اثبات میشود .همچنین برای پایدارسازی و حذف اثر اغتشاش خارجی ناسازگار از کلاسی از سیستمهای دینامیکی غیرخطی مرتبه کسری، کنترلکننده مدلغزشی مرتبه کسری با استفاده از رویتگر اغتشاش غیرخطی پیشنهاد شده است .کنترلکنندههای مدلغزشی مرتبه کسری پیشنهاد شده در این پایاننامه پایداری مقاوم، پاسخ سریع و زمان محدود سیستم حلقه بسته، خنثی کردن اثر اغتشاشات خارجی و نیز کاهش چترینگ را تضمین میکنند .از دیگر مزیتهای این روشهای کنترلی میتوان به قابلیت پایدارسازی کلاسی از سیستمهای دینامیکی مرتبه کسری و استفاده از یک سیگنال کنترلی ورودی اشاره نمود .در نهایت، نتایج شبیهسازی حاصل از پیادهسازی کنترلکنندههای مدلغزشی مرتبه کسری پیشنهاد شده بر روی کلاسی از سیستمهای دینامیکی غیرخطی مرتبه کسری ارائه شده است .مقایسه نتایج شبیهسازی روش پیشنهادی با برخی از روشهای دیگر کارایی و موثر بودن روشهای پیشنهادی را بهوضوح نشان میدهد
In this thesis, a new type of control strategy, which combining terminal sliding mode control with the fractional calculus that is called fractional-order terminal sliding mode control was proposed for stabilization of a class of fractional-order nonlinear dynamical systems in presence of matched uncertainties and external disturbances. In order to design the finite time terminal sliding mode controller, a proper fractional-order terminal switching surface was presented. Then, using the sliding mode theory and Lyapunov stability theory, a robust fractional-order control law is designed to ensure the existence of the sliding motion in finite time and also the system states can reach the equilibrium points in finite time. The finite time stability and robustness of proposed control method was proved by introducing of a theory. As well as for stabilization and mismatched external disturbance rejection of a class of fractional-order nonlinear dynamical systems, a fractional-order sliding mode control based on a nonlinear disturbance observer was proposed. The proposed fractional-order controllers in this thesis ensure robust stability, fast and finite time response of closed loop system, counteract the external disturbances as well as alleviate the chattering problem. The other advantages of the designed methods are the ability to stabilize of a class of fractional-order systems and using only one control signal. Finally, the simulation results of the implementation of proposed fractional-order sliding mode controllers for a class of fractional-order nonlinear dynamical systems are provided. Comparison of simulation results of the proposed method with other methods, demonstrate the effectiveness of the proposed methods