تأثیر بهکارگیری قیود حرکتی در دوره تمرین روی پارامترهای بیومکانیکی مهارت پرش عمودی
[پایان نامه]
امیرحسین امامیان شیرازی
صنعتی سهند
۱۴۰۱
۲۶۴ص.
مصور، جدول، نمودار
CD
دکتری
مهندسی پزشکی- بیومکانیک
۱۴۰۱/۱۱/۰۱
مهارت پرش عمودی در بسیاری از رشته¬های ورزشی دارای اهمیت است. بنابراین، دستیابی به بیشترین ارتفاع پرش، یکی از اهداف ورزشکاران و یک مزیت رقابتی در مسابقات است. برای بهبود عملکرد پرش عمودی و افزایش ارتفاع پرش لازم است پارامترهای بیومکانیکی مؤثر در اجرای این مهارت بهینه شوند. به طور کلی در کیفیت اجرای مهارت پرش عمودی دو عامل اساسی نقش دارند؛ یکی قدرت و توان انقباضی عضلات درگیر در حرکت و دیگری تکنیک اجرای مهارت است. نقش این عوامل در اجرای پرش عمودی به ترتیب با دو رویکرد سینتیکی و سینماتیکی بررسی می¬شود.در این پژوهش، متغیرهای مؤثر بر ارتفاع پرش عمودی پس از مرور پیشینه پژوهش و همچنین بر اساس مدل سلسله مراتبی طراحی شده و مدل شبکه عصبی شناسایی شده¬اند. جهت بهبود پارامترهای بیومکانیکی پرش عمودی و افزایش ارتفاع پرش، دوره تمرین مبتنی بر قیود حرکتی طراحی شد. سپس از داوطلبان مشارکت در این پژوهش 28 ورزشکار حرفه¬ای مرد جوان که دارای سابقه فعالیت حرفه¬ای در تیم¬های والیبال (11 نفر)، بسکتبال (6 نفر) یا کشتی (11 نفر) بودند انتخاب شدند. ویژگی¬های دموگرافیک و پارامترهای آنتروپومتریک و ترکیب بدن همه شرکت¬کنندگان اندازه¬گیری و ثبت شد. سپس با استفاده از سیستم تحلیل حرکت کوالیسیس با 8 دوربین و صفحه نیرو کیستلر از هر ورزشکار 6 پرش عمودی با حرکت مخالف ضبط شد. در نهایت پارامترهای سینماتیک پرش شامل زاویه و سرعت زاویه¬ای مفاصل مچ پا، زانو، ران و شانه محاسبه شد. همچنین، بر مبنای روش دینامیک معکوس، مطابق زنجیره بیومکانیکی بدن انسان، به ترتیب در مچ پا، زانو و ران، نیروی داخلی و گشتاور مفاصل محاسبه شد. علاوه بر این، پارامترهای مرتبط با نیروی عکس-العمل زمین بر مبنای داده¬های استخراج شده از صفحه نیرو شامل بیشینه مقدار مولفه عمودی نیروی عکس¬العمل زمین، بیشینه مقدار نرخ افزایش مولفه عمودی نیروی عکس¬العمل زمین، تکانه منفی و تکانه مثبت محاسبه شد.
Vertical jump is important in many sports. Therefore, achieving the highest jump is one of the athletes’ goals and a competitive advantage in competitions. In order to improve vertical jump performance and increasing jump height, it is necessary to optimize biomechanical parameters of this skill. In general, two basic parameters play a role in the vertical jump performance; One is the strength and contraction power of the muscles involved in the movement, and the other is the technique. The role of these parameters in the execution of the vertical jump is investigated with two kinetic and kinematic approaches, respectively. In this research, the effective variables on vertical jump height have been identified after reviewing the literature and also based on the designed hierarchical model and the neural network model. In order to improve the biomechanical parameters of vertical jump, a training course based on movement constraints was designed. Then, 28 young male professional athletes who had professional experience in volleyball (11 athletes), basketball (6 athletes) or wrestling (11 athletes) were selected from the volunteers to participate in this research. Demographic characteristics, anthropometric parameters, and body composition of all participants were measured and recorded. Then, 6 countermovement vertical jumps were captured from each athlete using Qualisys motion analysis system with 8 cameras synchronized with Kistler force plate. Finally, the kinematic parameters of the jump, including the angle and angular velocity of the ankle, knee, hip, and shoulder joints, were calculated. Also, based on the inverse dynamics method, according to the biomechanical chain of the human body, the internal force and torque of the joints were calculated in the ankle, knee and hip. In addition, the parameters related to the ground reaction force were calculated based on the data extracted from the force plane, including the maximum value of the vertical component of the ground reaction force, the maximum value of the increase rate of the vertical component of the ground reaction force, negative momentum, and positive momentum. In this research, after presenting the descriptive data (mean and standard deviation), the normal distribution of the data was checked using the Wilk-Shapiro test. Pearson's test was used to check the correlation between anthropometric parameters and jumping performance in each group. Examining the difference in the characteristics of the participants was done using an independent t-test and examining the effect of training using a paired t-test. Among 16 anthropometric parameters, only sitting height had a significant correlation with vertical jump height (correlation coefficient was 0.499). Besides, four dimensionless parameters including the ratio of fat mass to body mass, the ratio of skeletal muscle mass to body mass, the ratio of upper limb mass to body mass, and the ratio of lower limb mass to body mass had a significant correlation with jump height (P<0.05). Also, vertical jump height had a significant correlation with the maximum value of the vertical component of force (Pearson correlation coefficient = 0.658 and P<0.01), the maximum value of the increase rate of the vertical component of force (Pearson correlation coefficient = 0.399 and P<0.01), the amount of negative momentum (Pearson correlation coefficient = 0.192 and P<0.05) and positive impulse value (Pearson correlation coefficient = 0.381 and P<0.01). According to the angle-time graphs of the joints of the lower limbs, about 80% of the jump period was related to the eccentric phase and 20% to the concentric phase of the jump. This ratio was almost similar among all sports groups. Also, the general trend of lower limb joint angle changes was similar between the three groups of volleyball players, basketball players and wrestlers. In the group of volleyball players, the maximum hip torque was about 340 N.m, the maximum knee torque was about 140 N.m, and the maximum ankle torque was about 70 N.m. In the group of basketball players, the maximum value of thigh torque was about 380 N.m, the maximum value of knee torque was about 140 N.m, and the maximum value of ankle torque was about 35 N.m. In the group of wrestlers, the maximum value of thigh torque was about 210 N.m, the maximum value of knee torque was approximately 100 N.m, and the maximum value of ankle torque was about 40 N.m. The results of this research showed that short-term training based on movement constraints led to a significant increase in the shoulder take-off angle, as well as a significant increase in the maximum angular speed of shoulder flexion. The maximum angular velocity of shoulder flexion has also increased significantly due to normal exercises. In addition, normal exercises caused a significant increase in the maximum angular velocity of ankle plantar flexion, while exercise based on movement constraints did not have a significant effect on this parameter. In general, the trainings used in this research did not have a significant effect on the maximum torque of the lower limb joints; Only exercise based on movement constraints caused a significant increase in the maximum torque of the ankle joint. Also, the training regimen of this study did not have a significant effect on the maximum value of the vertical component of the ground reaction force and the maximum rate of increase of the vertical component of this force. Finally, neither the normal training nor the training based on movement constraints significantly increased the height of the countermovement vertical jump.