The approximation of functions by linear positive operators is an important research topic in general mathematics and it also provides powerful tools to application areas suchas computer-aided geometric design, numerical analysis, and solutions of differential equations. q-Calculus is a generalization of many subjects, such as hypergeometric series, complex analysis, and particle physics. This monograph is an introduction to combining approximation theory and q-Calculus with applications, by usingwell- known operators. The presentation is systematic and the authors include a brief summary of the notations and basicdefinitions ofq-calculus before delving into more advanced material. Themany applications of q-calculus in the theory of approximation, especially onvariousoperators, which includes convergence of operators to functions in real and complex domain forms the gist of the book. This book is suitable for researchers andstudents in mathematics, physics andengineering, and forprofessionals who would enjoy exploring the host of mathematicaltechniques and ideas that are collected and discussedin thebook.
Introduction of q-calculus -- q-Discrete operators and their results -- q-Integral operators -- q-Bernstein type integral operators -- q-Summation-integral operators -- Statistical convergence of q-operators -- q-Complex operators.?╗╣