Includes bibliographical references (p. [507]-511) and index.
Vector spaces -- Linear transformations -- The isomorphism theorems -- Modules I : basic properties -- Modules II : free and Noetherian modules -- Modules over a principal ideal domain -- The structure of a linear operator -- Eigenvalues and eigenvectors -- Real and complex inner product spaces -- Structure theory for normal operators -- Metric vector spaces : the theory of bilinear forms -- Metric spaces -- Hilbert spaces -- Tensor products -- Positive solutions to linear systems : convexity and separation -- Affine geometry -- Singular value and the Moore-Penrose inverse -- A introduction to algebras -- The umbral calculus.