Contents note continued: 8.8.Experimental Implementation of the PV Source Emulator -- 8.8.1.DC/DC Buck Converter -- 8.8.2.Control Board -- 8.8.3.DC/DC Boost Converter for the MPPT -- 8.9.Experimental Results -- 8.10.Conclusions.
Contents note continued: 7.12.State Space Averaging of Boost Converter -- 7.13.State Space Averaging of Buck-Boost Converter -- 7.14.Synopsis -- 7.15.Conclusions -- Bibliography -- 8.Feedback Control of the DC/DC Converters for PV Source Emulation -- 8.1.Negative Feedback Classical Control -- 8.1.1.Closed-Loop Gain -- 8.1.2.Stability Analysis -- 8.2.Feedback Structure of a DC/DC Converter -- 8.2.1.Feedback Network Transfer Function -- 8.2.2.Pulse Width Modulator Transfer Function -- 8.2.3.Compensation Networks -- 8.3.Complete State Feedback (Pole Placement Technique) -- 8.4.Enhanced Pole Placement for Buck Converter -- 8.4.1.Simulink?ض Implementation -- 8.5.DC/DC Converter-Based Emulation of a PV Source -- 8.5.1.DC/DC Power Converter Design Constraints -- 8.5.2.Selection of the Best Topology -- 8.6.Example of a PV Source Emulator Design -- 8.6.1.Power Stage Design -- 8.6.2.Pole Placement Voltage Controller -- 8.7.PLECS-Based Simulation of PV Source Emulator --
Contents note continued: 7.2.1.Linear Conversion by Voltage Divider -- 7.2.2.Linear Conversion by Series Regulator -- 7.3.Switching Conversion -- 7.4.Buck Converter -- 7.4.1.Continuous Operating Mode -- 7.4.2.Discontinuous Operating Mode -- 7.4.3.Continuous Operating Mode Including Parasitic Parameters -- 7.5.Boost Converter -- 7.5.1.Continuous Operating Mode -- 7.5.2.Discontinuous Operating Mode -- 7.5.3.Continuous Operating Mode Including Parasitic Parameters -- 7.6.Buck-Boost Converter -- 7.6.1.Continuous Operating Mode -- 7.6.2.Discontinuous Operating Mode -- 7.6.3.Continuous Operating Mode Including Parasitic Parameters -- 7.7.Comparison Among Buck, Boost, and Buck-Boost Topologies -- 7.8.Non-Ideal Behavior of Devices and Their Influence on the DC/DC Converter Operation -- 7.8.1.Inductor -- 7.8.2.Capacitor -- 7.8.3.Diode -- 7.8.4.Power Switch -- 7.9.State Space Representation -- 7.10.State Space Averaging -- 7.11.State Space Averaging of Buck Converter --
Contents note continued: 5.2.Dynamic PV Model Formulation -- 5.3.Parameters Identification -- 5.4.Matlab/Simulink?ض Simulation of PV Electrical Characteristics -- 5.4.1.V = f(I) Static Model Formulation -- 5.4.2.I = f(V) Static Model Formulation -- 5.4.3.S-Domain Dynamic Model -- 5.4.4.Nonlinear Junction Capacitance Implementation -- 5.4.5.PV Model Including Nonlinear Junction Capacitance -- 5.4.6.Circuit Implementation Using PLECS?ض -- 5.5.Conclusions -- Bibliography -- Part II -- 6.Photovoltaic Source Emulation -- 6.1.Introduction -- 6.2.PV Emulators: Concepts and Realization -- 6.2.1.Power Stage: A Survey of Proposed Solutions -- 6.2.2.Control Stage: PV Behavior Implementation -- 6.3.Dynamics and the Arbitrary Load Problem -- 6.4.Non-Ideal Operating Conditions -- 6.5.Rated Power -- 6.6.Modularity -- 6.7.Examples of Solutions Available on the Market -- 6.8.Conclusions -- Bibliography -- 7.DC/DC Power Converters -- 7.1.Introduction -- 7.2.Linear Conversion --
Contents note continued: Bibliography -- 4.Parameter Identification for Photovoltaic Source Models -- 4.1.Introduction -- 4.2.Five-Parameter PV Model Formulation -- 4.3.Four-Parameter PV Model Formulation -- 4.4.Methods for the Parameter Extraction -- 4.4.1.Analytical Solution -- 4.4.2.Numerical Solution -- 4.4.3.Heuristic Methods-Based Solution -- 4.5.Parameters Dependence on Temperature and Solar Irradiance -- 4.6.Identification of PV Model Parameters by Linear Regression Methods -- 4.7.PV Characteristic Representation Through Mapping Techniques -- 4.7.1.Look-Up-Table Approach -- 4.7.2.Neural Approach -- 4.8.Examples of Matlab/Simulink?ض Simulation of PV Electrical Characteristics -- 4.8.1.PV Field Array Model Identified by the Discrete Approach -- 4.8.2.PV Field Array Model Identified by the Regression Approach -- 4.8.3.PV Source Model Under Non-Uniform Irradiance -- 4.9.Conclusions -- Bibliography -- 5.Photovoltaic Source Dynamic Modeling Issues -- 5.1.Introduction --
Contents note continued: 2.10.Minority Carrier Diffusion Equations -- 2.11.P-N Junction -- 2.12.P-N Junction Capacitance -- 2.13.The PV Cell -- 2.13.1.Minority Carriers Current Density -- 2.13.2.Optical Generation Rate -- 2.13.3.Recombination Rate -- 2.13.4.Current Versus Voltage Law of Photovoltaic Cell -- 2.14.Physical Model of a PV Cell -- 2.15.Semiconductor Types -- 2.15.1.Crystalline Silicon -- 2.15.2.Multicrystalline -- 2.15.3.Amorphous -- 2.15.4.Thin Film -- 2.15.5.Polymer Solar Cell -- 2.16.Conclusions -- Bibliography -- 3.Photovoltaic Source Models -- 3.1.Introduction -- 3.2.Static Model -- 3.2.1.Circuit Model of a PV Cell -- 3.2.2.Diffusion Diode Non-Ideality -- 3.2.3.Parasitic Resistance Effects -- 3.2.4.Generalized Double Diode Model -- 3.2.5.Simplified Single Diode Model -- 3.3.Cell-Module/Field -- 3.4.Dynamic Model -- 3.4.1.Parallel Capacitance -- 3.4.2.Series Inductance -- 3.5.Modeling PV Fields under Nonuniform Illuminating Conditions -- 3.6.Conclusions --
Machine generated contents note: Part I -- 1.From the Nuclear Fusion to the Radiated Energy on the Earth -- 1.1.Inside the Universe -- 1.2.The Sun -- 1.2.1.Inside the Sun -- 1.3.From the Sun to the Earth -- 1.3.1.Finding One's Bearings on the Earth -- 1.3.2.The Greenhouse Effect -- 1.4.Tracking the Sun -- 1.5.Measuring Sunlight -- 1.6.Sunlight Emulation -- 1.7.Collecting Sunlight -- 1.8.Conclusions -- Bibliography -- 2.From Radiated Energy to Electrical Energy: Physics of Photovoltaic Cells -- 2.1.Prologue: The Photoelectric Effect -- 2.2.Metals, Semiconductors, Insulators -- 2.3.Inside the Band Structure of a Semiconductor -- 2.4.Absorption of Light -- 2.5.Allowable States for Holes and Electrons -- 2.6.Energy Distribution for Holes and Electrons -- 2.7.Doping -- 2.8.Carrier Transport -- 2.8.1.Drift Current -- 2.8.2.Diffusion Current -- 2.8.3.Semiconductor Resistivity -- 2.9.Semiconductor Fundamental Equations -- 2.9.1.The Poisson's Equation -- 2.9.2.Continuity Equation --