:concepts, syntheses, characterization, modeling and applications
/ edited by Klaus K. Unger, Nobuo Tanaka, and Egidijus Machtejevas
Weinheim
: Wiley-VCH,
, c2011.
xviii, 344 p. , ill. , 25 cm.
Formerly CIP.5Uk.
Print
Includes bibliographical references and index.
16.1.Introduction --16.2.Liquid Chromatography as a Tool Box for Proteomics --16.3.Selectivity of Columns for MD-LC --16.4.Dimensions of Columns in MD-LC --16.5.Monolithic Silica Columns --16.6.Applications of Monolithic Silica in Proteomics-A Brief Survey --16.7.Summary and Conclusions --References --17.Silica Monoliths in Solid-Phase Extraction and Solid-Phase Microextraction /Hian Kee Lee --17.1.Introduction --17.2.Extraction Process --17.3.Extraction Platforms --17.3.1.Online Extraction --17.3.2.Offline Extraction --17.4.Applications --17.4.1.SPE and SPME --17.4.1.1.Silica Monolith from Entrapped Particles --17.4.1.2.Silica Monolith from Direct Sol-Gel Strategy --17.4.2.Other Applications of Silica Monolith --17.5.Conclusion and Outlook --References.
14.1.Introduction --14.2.Offline Chromatography, LC MALDI MS --14.3.Online ESI LC/MS/MS for Proteomics and Selected Reaction Monitoring (SRM) --14.4.Online Reactors and Affinity Columns Coupled to Mass Spectrometry --14.5.Conclusion --References --15.Silica Monoliths for Small-Scale Purification of Drug-Discovery Compounds /Manuel Molina-Martin --15.1.Introduction --15.2.Instrumental and Operating Considerations --15.2.1.Analytical Conditions --15.2.2.Preparative Conditions --15.3.Preparative Separations and Sample Loading --15.3.1.Semipreparative Monolithic 10 100 mm Column --15.3.2.Preparative Monolithic 25 100 mm Column --15.4.Purification of Drug-Discovery Compounds --15.5.Conclusions --Acknowledgment --References --16.Monolithic Silica Columns in Multidimensional LC-MS for Proteomics and Peptidomics /Egle Machtejeviene.
13.4.3.Performance of Long Capillary Columns for Peptides in Gradient Mode --13.5.Monolithic Silica Capillary Columns for High-Speed Separations --13.5.1.Monolithic Silica Columns Having Increased Phase Ratios --13.5.2.Performance of High-Speed Monolithic Silica Columns --13.5.3.Comparison of Performance with a Particle-Packed Column --13.6.Future Considerations --13.7.Conclusion --References --14.Silica Monolithic Columns and Mass Spectrometry /Keith Ashman --
11.7.Analytical Applications --11.8.Future Work --References --12.Monolithic Chiral Stationary Phases for Liquid-Phase Enantioseparation Techniques /Bezhan Chankvetadze --12.1.Introduction --12.2.Organic Monolithic Materials for the Separation of Enantiomers --12.3.Silica-Based Monolithic Materials for the Separation of Enantiomers --12.3.1.Monolithic Silica Columns with Physically Adsorbed Chiral Selector --12.3.2.Monolithic Silica Columns with Covalently Attached Chiral Selector --12.4.Summary of the Present State-of-the-Art and Problems to be Solved in the Future --References --13.High-Speed and High-Efficiency Separations by Utilizing Monolithic Silica Capillary Columns /Nobuo Tanaka --13.1.Introduction --13.2.Preparation of Monolithic Silica Capillary Columns --13.3.Properties of Monolithic Silica Capillary Columns --13.4.Monolithic Silica Capillary Columns for High-Efficiency Separations --13.4.1.Performance of Long Monolithic Silica Capillary Columns --13.4.2.Examples of High-Efficiency Separations --13.4.2.1.Isocratic Mode.
9.6.Performance of Hybrid Capillary Silica Monoliths for Basic Compounds --9.7.Conclusions --References --10.Quality Control of Drugs /Sami El Deeb --10.1.Introduction --10.2.Analysis of Pharmaceutics --10.3.Natural Products Analysis --10.4.Analysis Speed and Performance --10.5.Method Transfer --10.6.Separation of Complex Mixtures --10.7.Monolith Derivatives and Versatile Application --10.8.Summary and Conclusions --References --11.Monolithic Stationary Phases for Fast Ion Chromatography /Paul R. Haddad --11.1.Fast Ion Chromatography --11.2.Historical Development of Fast Ion Chromatography --11.3.3 Advantages of the Bimodal Porous Structure of the Silica Monolith Matrix --11.4.Type and Properties of Silica Monolithic Columns Used in IC --11.5.Modification of Silica Monoliths for IC Separations --11.5.1.Bare-Silica Monoliths as Ion Exchangers --11.5.2.Coated Reversed-Phase Silica Monolithic Ion-Exchange Columns --11.5.3.Silica Monoliths with Covalently Bonded Ion-Exchange Groups --11.6.Operational Parameters.
7.4.2.Column Loadability --7.5.Kinetic Properties and Column Efficiency --7.5.1.Axial Dispersion --7.5.2.Mass-Transfer Kinetics --7.5.3.Column Impedance --7.5.4.Kinetic Properties --7.6.Conclusions --Acknowledgments --Symbols --Greek Symbols --References --pt. ThreeApplications --8.Quantitative Structure-Retention Relationships in Studies of Monolithic Materials /Michat J. Markuszewski --8.1.Fundamentals of Quantitative Structure-Retention Relationships (QSRR) --8.2.Quantitative Relationships between Analyte Hydrophobicily and Retention on Monolithic Columns --8.3.QSRR Based on Structural Descriptors from Calculation Chemistry --8.4.LSER on Monolithic Columns --8.5.Concluding Remarks --References --9.Performance of Silica Monoliths for Basic Compounds. Silanol Activity /David V. McCalley --9.1.Introduction --9.2.Reproducibility of Commercial Monoliths for Analysis of Bases --9.3.Activity of Monoliths towards Basic Solutes --9.4.Contribution of Overload to Peak Shapes of Basic Solutes --9.5.Van Deemter Plots for Commercial Monoliths.
7.2.1.4.Measurement of the Column External and Internal Porosities --7.2.2.Column Permeability --7.2.2.1.Permeability of Packed Columns --7.2.2.2.Permeability of Monolithic Columns --7.2.3.Column Efficiency --7.2.3.1.The HETP Equation --7.2.3.2.Reduced HETP and Reduced Velocity --7.2.4.Column Impedance --7.3.Comparison of the Through-Pore Structures and Related Properties --7.3.1.Porosity and Through-Pore Structure --7.3.1.1.External Porosity of Packed and Monolithic Columns --7.3.1.2.Importance of the Size of the Through-Pores --7.3.1.3.Average Size of the Through-Pores in Packed Columns --7.3.1.4.Average Size of the Through-Pores of Monolithic Columns --7.3.2.Column Permeability --7.3.2.1.Permeability of Packed Columns --7.3.2.2.Permeability of Monolithic Columns --7.3.3.Column Radial Homogeneity --7.3.3.1.Radial Heterogeneity of Packed Columns --7.3.3.2.Radial Heterogeneity of Monolithic Columns --7.3.3.3.Consequences of Column Radial Heterogeneity --7.4.Thermodynamic Properties --7.4.1.Retention --7.4.1.1.Retention Factors --7.4.1.2.Reproducibility of Retention Factors and Isotherms.
5.6.3.Deformed Macroporous Structures between Plates in MM System --References --6.Modeling Chromatographic Band Broadening in Monolithic Columns /Gert Desmet --6.1.Introduction --6.2.The General Plate-Height Model --6.2.1.Meaning of k", uj and Kp --6.2.2.Expressions for Hax --6.2.3.Estimation of Dmol and Dskel --6.2.4.Expressions for kCap and Kf,skel --6.2.5.Selection of the Characteristic Reference Lengths --6.2.6.Complete Plate-Height Equation --6.3.Use of the General Plate-Height Model to Predict Band Broadening in TSM Structures --6.3.1.Nonporous Skeleton Case --6.3.2.Porous Skeleton Case --6.4.Conclusion --Acknowledgments --Symbols --Greek Symbols --Subscripts --References --7.Comparison of the Performance of Particle-Packed and Monolithic Columns in High-Performance Liquid Chromatography /Georges Guiochon --7.1.Introduction --7.2.Basic Columns Properties --7.2.1.Total, External and Internal Column Porosity --7.2.1.1.Definition of the Total Column Porosity --7.2.1.2.Measurement of the Total Column Porosity --7.2.1.3.Definitions of the Column External and Internal Porosities.
4.3.1.Mercury Intrusion-Extrusion --4.3.2.Inverse Size-Exclusion Chromatography --4.3.3.Nitrogen Sorption --4.3.4.Liquid Permeation --4.3.5.Microscopy and Image Analysis --4.4.Comparison of the Silica Monolith Mesopore-Characterization Data --4.5.Comparison of the Silica Monolith Flow-Through Pore-Characterization Data --References --5.Microscopic Characterizations /Kazuki Nakanishi --5.1.Introduction --5.2.Preparation of Macroporous Silica Monolith --5.3.Laser Scanning Confocal Microscope Observation --5.4.Image Processing --5.5.Fundamental Parameters --5.5.1.Porosity --5.5.2.Surface Area --5.5.3.Characteristic Wavelength --5.5.4.Macropore Size and Skeleton Thickness --5.5.5.Chord Length --5.5.6.Mean Curvature and Gaussian Curvature --5.5.7.Curvature Distributions --5.5.7.1.Comparison between Different Porosities --5.5.7.2.Comparison between Different Macropore Sizes --5.6.Three-Dimensional Observation of Deformations in Confined Geometry --5.6.1.Synthesis and Characters of Organic-Inorganic Hybrid Monoliths --5.6.2.Deformed Macroporous Structures between Plates in MF System.
2.3.4.Preparation Procedure for Capillary Monolith --2.3.5.Aging of Wet Monolith to Tailor Mesopores --2.3.6.Drying and Heat Treatment --2.3.7.Miscellaneous Factors for Better Reproducibility --2.4.Monolithic Columns Prepared in the Laboratory --2.4.1.Epoxy-Clad Columns --2.4.2.Capillary Columns --2.4.3.Other Types --2.5.Summary --References --3.Preparation and Properties of Various Types of Monolithic Silica Stationary Phases for Reversed-Phase, Hydrophilic Interaction, and Ion-Exchange Chromatography Based on Polymer-Coated Materials /Tohru Ikegami --3.1.Stationary Phases for Reversed-Phase Chromatography --3.2.Stationary Phases for Hydrophilic-Interaction Chromatography Separations --3.3.Stationary Phases for Ion-Exchange Separations --3.4.Advantages of Polymer-Coated Monolithic Silica Columns --References --pt. TwoCharacterization and Modeling --4.Characterization of the Pore Structure of Monolithic Silicas /Klaus K. Unger --4.1.Monolithic Silicas --4.2.General Aspects Describing Porous Materials --4.3.Characterization Methods of the Pore Structure of Monolithic Silicas.
Machine generated contents note:1.The Basic Idea and the Drivers /Klaus K. Unger --1.1.Definitions --1.2.Monoliths as Heterogeneous Catalysts --1.3.Monoliths in Chromatographic Separations --1.4.Conclusion and Perspectives --References --pt. OnePreparation --2.Synthesis Concepts and Preparation of Silica Monoliths /Kazuki Nakanishi --2.1.Introduction --2.2.Background and Concepts --2.2.1.Sol-Gel Reactions of Silica --2.2.2.Polymerization-Induced Phase Separation --2.2.3.Domain Formation by Phase Separation --2.2.4.Arresting Transient Structure within a Solidifying Network --2.2.5.Macropore Control --2.2.6.Mesopore Control --2.3.Synthesis of Silica Monoliths --2.3.1.Silica Source and Catalyst --2.3.2.Additives to Induce Phase Separation --2.3.3.Preparation Procedure for Bulk Monolith --2.3.3.1.Dissolution of PEO in Acidic Water --2.3.3.2.Addition of TMOS for Hydrolysis --2.3.3.3.Transferring the Solution to a Mold --2.3.3.4.Gelation and Aging.