:a novel method to accomplish observational economy in environmental studies
/ Ganapati P. Patil, Sharad D. Gore, Charles Taillie (deceased
New York
: Springer,
, c2011.
1 online resource (xiii, 275 p.)
(Environmental and ecological statistics.)
Print
Includes bibliographical references and index.
Note continued:10.5.Compositing of Ranked Set Samples --10.5.1.Ranked Set Sampling --10.5.2.Relative Precision of the RSS Estimator of a Population Mean Relative to Its SRS Estimator --10.5.3.Unequal Allocation of Sample Sizes --10.5.4.Formation of Homogeneous Composite Samples --11.Composite Sampling of Soils and Sediments --11.1.Detection of Contamination --11.1.1.Detecting PCB Spills --11.1.2.Compositing Strategy for Analysis of Samples --11.2.Estimation of the Average Level of Contamination --11.2.1.Estimation of the Average PCB Concentration on the Spill Area --11.2.2.Onsite Surface Soil Sampling for PCB at the Armagh Site --11.2.3.Armagh Site --11.2.4.Simulating Composite Samples --11.2.5.Locating Individual Samples with High PCB Concentrations --11.3.Estimation of Trace Metal Storage in Lake St. Clair Post-settlement Sediments Using Composite Samples --12.Composite Sampling of Liquids and Fluids --12.1.Comparison of Random and Composite Sampling Methods for the Estimation of Fat Content of Bulk Milk Supplies --12.1.1.Experiment --12.1.2.Estimation Methods --12.1.3.Results --12.1.4.Composite Compared with Yield-Weighted Estimate of Fat Percentage --12.2.Composite Sampling of Highway Runoff --12.3.Composite Samples Overestimate Waste Loads --13.Composite Sampling and Indoor Air Pollution --13.1.Household Dust Samples --14.Composite Sampling and Bioaccumulation --14.1.Example: National Human Adipose Tissue Survey --14.2.Results from the Analysis of 1987 NHATS Data.
Note continued:7.5.6.Lateral Variability of Forest Floor Properties Under Second-Growth Douglas-Fir Stands and the Usefulness of Composite Sampling Techniques --8.Linear Model for Estimation with Composite Sample Data --8.1.Introduction --8.2.Motivation for a Unified Model --8.3.Model --8.4.Discussion of the Assumptions --8.4.1.Structural/Sampling Submodel --8.4.2.Compositing/Subsampling Submodel --8.4.3.Structure of the Matrices W, Mw, and Σw --8.5.Moments of and y --8.6.Complex Sampling Schemes Before Compositing --8.6.1.Segmented Populations --8.6.2.Estimating the Mean in Segmented Populations --8.6.3.Estimating Variance Components in Segmented Populations --8.7.Estimating the Effect of a Binary Factor --8.7.1.Fully Segregated Composites --8.7.2.Fully Confounded Composites --8.8.Elementary Matrices and Kronecker Products --8.8.1.Decomposition of Block Matrices --8.9.Expectation and Dispersion Matrix When Both W and Are Random --8.9.1.Expectation of Wx --8.9.2.Variance/Covariance Matrix of Wx --9.Composite Sampling for Site Characterization and Cleanup Evaluation --9.1.Data Quality Objectives --9.2.Optimal Composite Designs --9.2.1.Cost of a Sampling Program --9.2.2.Optimal Allocation of Resources --9.2.3.Power of a Test and Determination of Sample Size --9.2.4.Algorithms for Determination of Sample Size --10.Spatial Structures of Site Characteristics and Composite Sampling --10.1.Introduction --10.2.Models for Spatial Processes --10.2.1.Composite Sampling --10.3.Application to Two Superfund Sites --10.3.1.Two Sites --10.3.2.Methods --10.3.3.Results --10.3.4.Discussion --10.4.Compositing by Spatial Contiguity --10.4.1.Introduction --10.4.2.Retesting Strategies --10.4.3.Composite Sample-Forming Schemes --
Note continued:5.3.Minimization of the Expected Relative Cost --5.4.Discussion --6.Inference on Mean and Variance --6.1.Introduction --6.2.Notation and Basic Results --6.2.1.Notation --6.2.2.Basic Results --6.3.Estimation Without Measurement Error --6.4.Estimation in the Presence of Measurement Error --6.5.Maintaining Precision While Reducing Cost --6.6.Estimation of σ 2 and σ 2 ε --6.7.Estimation of Population Variance --6.8.Confidence Interval for the Population Mean --6.9.Tests of Hypotheses in the Population Mean --6.9.1.One-Sample Tests --6.9.2.Two-Sample Tests --6.10.Applications --6.10.1.Comparison of Arithmetic Averages of Soil pH Values with the pH Values of Composite Samples --6.10.2.Comparison of Random and Composite Sampling Methods for the Estimation of Fat Contents of Bulk Milk Supplies --6.10.3.Optimization of Sampling for the Determination of Mean Radium-226 Concentration in Surface Soil --7.Composite Sampling with Random Weights --7.1.Introduction --7.2.Expected Value, Variance, and Covariance of Bilinear Random Forms --7.3.Models for the Weights --7.3.1.Assumptions on the First Two Moments --7.3.2.Distributional Assumptions --7.4.Model for Composite Sample Measurements --7.4.1.Subsampling a Composite Sample --7.4.2.Several Composite Samples --7.4.3.Subsampling of Several Composite Samples --7.4.4.Measurement Error --7.5.Applications --7.5.1.Sampling Frequency and Comparison of Grab and Composite Sampling Programs for Effluents --7.5.2.Theoretical Comparison of Grab and Composite Sampling Programs --7.5.3.Grab vs. Composite Sampling: A Primer for the Manager and Engineer --7.5.4.Composite Samples Overestimate Waste Loads --7.5.5.Composite Samples for Foliar Analysis --