Includes bibliographical references (p. 357) and index.
1. The set of real numbers. Sets and mappings -- The set R -- The subset N and the principle of induction -- The completeness property -- Sequences and limits -- Nonnegative series and decimal expansions -- Signed series and Cauchy sequences -- 2. Continuity. Compactness -- Continuous limits -- Continuous functions -- 3. Differentiation. Derivatives -- Mapping properties -- Graphing techniques -- Power series -- Trigonometry -- Primitives -- 4. Integration. The Cantor set -- Area -- The integral -- The fundamental theorem of calculus -- The method of exhaustion -- 5. Applications. Euler's gamma function -- The number [Greek letter pi] -- Gauss' arithmetic-geometric mean (AGM) -- The Gaussian integral -- Stirling's approximation of n! -- Infinite products -- Jacobi's theta functions -- Riemann's zeta function -- The Euler-Maclaurin formula -- A. Solutions. A.1. Solutions to Chapter 1 -- A.2. Solutions to Chapter 2 -- A.3. Solutions to Chapter 3 -- A.4. Solutions to Chapter 4 -- A.5. Solutions to Chapter 5 -- References -- Index.