Originally published: Classical and quantum dynamics. 2nd corr. and enl. ed. Berlin ; New York : Springer-Verlag, c1994.
e
ng
Includes bibliographical references (p. [381]-382) and index.
Machine generated contents note: Introduction -- 1. The Action Principles in Mechanics -- 2. The Action Principle in Classical Electrodynamics -- 3. Application of the Action Principles -- 4. Jacobi Fields, Conjugate Points -- 5. Canonical Transformations -- 6. The Hamilton-Jacobi Equation -- 7. Action-Angle Variables -- 8. The Adiabatic Invariance of the Action Variables -- 9. Time-Independent Canonical Perturbation Theory -- 10. Canonical Perturbation Theory with Several Degrees of Freedom -- 11. Canonical Adiabatic Theory -- 12. Removal of Resonances -- 13. Superconvergent Perturbation Theory, KAM Theorem (Introduction) -- 14. Poincare Surface of Sections, Mappings -- 15. The KAM Theorem -- 16. Fundamental Principles of Quantum Mechanics -- 17. Functional Derivative Approach -- 18. Examples for Calculating Path Integrals -- 19. Direct Evaluation of Path Integrals -- 20. Linear Oscillator with Time-Dependent Frequency -- 21. Propagators for Particles in an External Magnetic Field -- 22. Simple Applications of Propagator Functions -- 23. The WKB Approximation -- 24. Computing the trace -- 25. Partition Function for the Harmonic Oscillator -- 26. Introduction to Homotopy Theory -- 27. Classical Chem-Simons Mechanics -- 28. Semiclassical Quantization -- 29. The "Maslov Anomaly" for the Harmonic Oscillator -- 30. Maslov Anomaly and the Morse Index Theorem -- 31. Berry's Phase -- 32. Classical Analogues to Berry's Phase -- 33. Berry Phase and Parametric Harmonic Oscillator -- 34. Topological Phases in Planar Electrodynamics -- References -- Index.