Includes bibliographical references (p. 229-232) and index.
Machine generated contents note: 1. ATOMIC STRUCTURE -- 1 Beginnings -- 2 The Hydrogen Atom -- 2.1 Eigenstates in the spherical representation -- 2.2 High symmetry of the hydrogen atom, -- separation in parabolic coordinates -- 3 The Two-electron Atom -- 3.1 The ground state of helium -- 3.2 Excited states -- 3.3 Configuration interaction -- 4 Heavier Atoms -- 4.1 Configurations and states -- 4.2 Simple screening pictures -- 4.3 The Thomas-Fermi self-consistent field model -- 4.4 Exact treatments: Hartree-Fock and -- configuration interaction -- 5 Line Spectra and Their Uses -- 5.1 Atomic spectra in astronomy -- 5.2 Doppler shifts of spectral lines -- Problems -- 2. COUPLING OF ATOMS TO RADIATION -- 1 Introduction -- 2 Photoabsorption and Photoemission -- 2.1 The Oscillator strength -- 2.2 Alternative forms of the dipole -- matrix element -- 2.3 Selection rules -- 2.4 Moments and sum rules -- 3 Charged-particle Collisions -- 3.1 The Generalized Oscillator strength -- 3.2 Total cross-section -- 4 The Negative Ion of Hydrogen -- 4.1 The ground state of H- -- 4.2 Photodetachment of H- -- 4.3 Radiative capture -- Problems -- 3. ATOMS IN WEAK, STATIC FIELDS -- 1 Introduction -- 2 External Electric and Magnetic Fields -- 2.1 Coupling to external fields -- 2.2 Time-independent perturbation theory -- 2.3 The Stark effect -- 2.4 The Zeeman effect -- 3 Internal Perturbations in an Atom -- 3.1 Relativistic mass correction -- 3.2 Spin-orbit coupling -- 3.3 Other corrections -- Problems -- 4. ATOMS IN STRONG MAGNETIC FIELDS -- 1 Introduction -- 1.1 Free electrons in a magnetic field -- 2 Excited States in a Magnetic Field -- 2.1 Basic Hamiltonian and spectrum -- 2.2 Degenerate perturbation theory in -- an n-manifold -- 2.3 Large-scale numerical calculations -- 2.4 Quasi-classical JWKB analysis -- 2.5 Rydberg diamagnetism in other atoms -- 3 Strong Field Effects on Low-lying States -- 3.1 Introduction -- 3.2 Hydrogen in an ultrastrong magnetic field -- 3.3 Complex atoms in ultrastrong fields -- 3.4 Complex atoms in very strong, -- but not ultrastrong, fields -- 4 Strong Magnetic Fields in Astronomy -- Problems -- 5. ELECTRON CORRELATIONS -- 1 Introduction -- 2 Electron Correlations -- 2.1 Qualitative picture -- 2.2 The spectrum of He and H- -- 2.3 Experimental observation -- 3 Hyperspherical Coordinates -- 3.1 Coulomb potential and hyperspherical -- harmonics in six dimensions -- 3.2 Adiabatic hyperspherical method -- 3.3 Description of resonances -- 3.4 High-lying doubly-excited states and double -- ionization -- 4 Dielectronic Recombination -- Problems -- 6. DIATOMIC MOLECULES -- 1 Introduction -- 2 Structure of Diatomic Molecules -- 2.1 Basic mechanism and nomenclature -- of covalent bonds -- 2.2 Molecular orbitals and states of simple -- diatomic molecules -- 2.3 The Born-Oppenheimer approximation -- 2.4 Rotations and vibrations of the internuclear axis -- 2.5 Anharmonicities and rotation-vibration -- coupling -- 2.6 Parity of molecular states -- 2.7 Effect of nuclear spin -- 3 Molecular Spectra -- 3.1 Rotational spectra -- 3.2 Vibrational spectra -- 3.3 Raman spectra -- 3.4 Electronic spectra -- 3.5 External field effects on molecular spectra -- 3.6 Collisional processes -- 4 Astrophysical Applications -- Problems -- 7. POLYATOMIC MOLECULES -- 1 Introduction -- 2 Structure and Spectra of Polyatomic Molecules -- 2.1 Born-Oppenheimer approximation and -- electronic structure -- 2.2 Rotation of polyatomic molecules -- and spectra -- 2.3 Vibrations of polyatomic molecules -- 2.4 Degeneracies and rovibronic couplings -- 3 Astrophysical Applications -- Problems.