• الرئیسیة
  • البحث المتقدم
  • قائمة المکتبات
  • حول الموقع
  • اتصل بنا
  • نشأة
  • ورود / ثبت نام

عنوان
Big and complex data analysis :methodologies and applications

پدید آورنده
S. Ejaz Ahmed, editor

موضوع
، Big data,، Data mining

رده
QA
76
.
9
.
B45

کتابخانه
كتابخانه مركزي و مركز اسناد دانشگاه صنعتي خواجه نصير الدين طوسى

محل استقرار
استان: طهران ـ شهر: طهران

كتابخانه مركزي و مركز اسناد دانشگاه صنعتي خواجه نصير الدين طوسى

تماس با کتابخانه : 88881052-88881042-021

Big and complex data analysis :methodologies and applications

Springer
2017

p.: ill

Contributions to statistics

Includes bibliographical references

S. Ejaz Ahmed, editor

Preface; Contents; Part I General High-Dimensional Theory and Methods; Regularization After Marginal Learning for Ultra-High Dimensional Regression Models; 1 Introduction; 2 Model Setup and Several Methods in Variable Selection; 2.1 Model Setup and Notations; 2.2 Regularization Techniques; 2.3 Sure Independence Screening; 3 Regularization After Marginal Learning; 3.1 Algorithm; 3.2 Connections to SIS and RAR; 3.3 From RAM-2 to RAM; 4 Asymptotic Analysis; 4.1 Sure Independence Screening Property; 4.2 Sign Consistency for RAM-2; 4.3 Sign Consistency for RAM; 5 Numerical StudyPreface; Contents; Part I General High-Dimensional Theory and Methods; Regularization After Marginal Learning for Ultra-High Dimensional Regression Models; 1 Introduction; 2 Model Setup and Several Methods in Variable Selection; 2.1 Model Setup and Notations; 2.2 Regularization Techniques; 2.3 Sure Independence Screening; 3 Regularization After Marginal Learning; 3.1 Algorithm; 3.2 Connections to SIS and RAR; 3.3 From RAM-2 to RAM; 4 Asymptotic Analysis; 4.1 Sure Independence Screening Property; 4.2 Sign Consistency for RAM-2; 4.3 Sign Consistency for RAM; 5 Numerical StudyPreface; Contents; Part I General High-Dimensional Theory and Methods; Regularization After Marginal Learning for Ultra-High Dimensional Regression Models; 1 Introduction; 2 Model Setup and Several Methods in Variable Selection; 2.1 Model Setup and Notations; 2.2 Regularization Techniques; 2.3 Sure Independence Screening; 3 Regularization After Marginal Learning; 3.1 Algorithm; 3.2 Connections to SIS and RAR; 3.3 From RAM-2 to RAM; 4 Asymptotic Analysis; 4.1 Sure Independence Screening Property; 4.2 Sign Consistency for RAM-2; 4.3 Sign Consistency for RAM; 5 Numerical StudyPreface; Contents; Part I General High-Dimensional Theory and Methods; Regularization After Marginal Learning for Ultra-High Dimensional Regression Models; 1 Introduction; 2 Model Setup and Several Methods in Variable Selection; 2.1 Model Setup and Notations; 2.2 Regularization Techniques; 2.3 Sure Independence Screening; 3 Regularization After Marginal Learning; 3.1 Algorithm; 3.2 Connections to SIS and RAR; 3.3 From RAM-2 to RAM; 4 Asymptotic Analysis; 4.1 Sure Independence Screening Property; 4.2 Sign Consistency for RAM-2; 4.3 Sign Consistency for RAM; 5 Numerical Study

، Big data
، Data mining

QA
76
.
9
.
B45

TI

AU Ahmed, S. E.)Syed Ejaz( editor 1957-
SE
SE Contributions to statistics

الاقتراح / اعلان الخلل

تحذیر! دقق في تسجیل المعلومات
ارسال عودة
تتم إدارة هذا الموقع عبر مؤسسة دار الحديث العلمية - الثقافية ومركز البحوث الكمبيوترية للعلوم الإسلامية (نور)
المكتبات هي المسؤولة عن صحة المعلومات كما أن الحقوق المعنوية للمعلومات متعلقة بها
برترین جستجوگر - پنجمین جشنواره رسانه های دیجیتال