Spectroscopic studies of zinc tungstate and doped zinc tungstate single crystals
[Thesis]
H. Wang
F. D. Medina
Florida Atlantic University
1993
241
Ph.D.
Florida Atlantic University
1993
Zinc tungstate (ZnWO4) is promising as a scintillator and laser host material. However, the presence of color centers limit its applications. It has been found that special annealing techniques or doping with metallic elements such as Nb or Sb can bleach the samples (Zhou et al. 1986a, 1986b, 1989). A group-theoretical analysis of the characteristic lattice vibrational modes for ZnWO4 single crystals is given. The mode assignments have been made. The temperature dependence of the Raman spectra has been obtained experimentally in various polarization geometries. Anharmonic contributions and interactions between phonons are discussed. Photoluminescence studies of ZnWO4 (colored, color-free), ZnWO4:Nb and ZnWO4:Sb have been carried out in the temperature range from 11 to 430 K. All samples show the blue emission band. An IR emission band with a zero-phonon line (ZPL) has been found in ZnWO4 colored samples only. The lineshape function of the emission bands has been theoretically studied and compared with the experimental results. Radiative, non-radiative and multiphonon transitions have been investigated in the thermal quenching model. The temperature dependences of the intensity, the frequency and the linewidth of the ZPL have been studied. Using the Single Configurational Coordinate model, the linear coupling between electrons and phonons has been analyzed. The quadratic coupling of electrons and phonons has been studied in the Debye approximation. The coupling of electronic transitions to normal vibrational modes, pseudo-localized vibrational modes and localized modes is also discussed.