• الرئیسیة
  • البحث المتقدم
  • قائمة المکتبات
  • حول الموقع
  • اتصل بنا
  • نشأة
  • ورود / ثبت نام

عنوان
A Comprehensive Evaluation of Feature-Based Malicious Website Detection

پدید آورنده
McGahagan, John F., IV

موضوع
Artificial intelligence,Computer engineering,Computer science

رده

کتابخانه
کتابخانه مطالعات اسلامی به زبان های اروپایی

محل استقرار
استان: قم ـ شهر: قم

کتابخانه مطالعات اسلامی به زبان های اروپایی

تماس با کتابخانه : 32910706-025

TLpq2495055993

انگلیسی

A Comprehensive Evaluation of Feature-Based Malicious Website Detection
[Thesis]
McGahagan, John F., IV
Cukier, Michel

University of Maryland, College Park
2020

299

Ph.D.
University of Maryland, College Park
2020

Although the internet enables many important functions of modern life, it is also a ground for nefarious activity by malicious actors and cybercriminals. For example, malicious websites facilitate phishing attacks, malware infections, data theft, and disruption. A major component of cybersecurity is to detect and mitigate attacks enabled by malicious websites. Although prior researchers have presented promising results - specifically in the use of website features to detect malicious websites - malicious website detection continues to pose major challenges. This dissertation presents an investigation into feature-based malicious website detection. We conducted six studies on malicious website detection, with a focus on discovering new features for malicious website detection, challenging assumptions of features from prior research, comparing the importance of the features for malicious website detection, building and evaluating detection models over various scenarios, and evaluating malicious website detection models across different datasets and over time. We evaluated this approach on various datasets, including: a dataset composed of several threats from industry; a dataset derived from the Alexa top one million domains and supplemented with open source threat intelligence information; and a dataset consisting of websites gathered repeatedly over time. Results led us to postulate that new, unstudied, features could be incorporated to improve malicious website detection models, since, in many cases, models built with new features outperformed models built from features used in prior research and did so with fewer features. We also found that features discovered using feature selection could be applied to other datasets with minor adjustments. In addition: we demonstrated that the performance of detection models decreased over time; we measured the change of websites in relation to our detection model; and we demonstrated the benefit of re-training in various scenarios.

Artificial intelligence
Computer engineering
Computer science

Cukier, Michel
McGahagan, John F., IV

 مطالعه متن کتاب 

p

[Thesis]
276903

a
Y

الاقتراح / اعلان الخلل

تحذیر! دقق في تسجیل المعلومات
ارسال عودة
تتم إدارة هذا الموقع عبر مؤسسة دار الحديث العلمية - الثقافية ومركز البحوث الكمبيوترية للعلوم الإسلامية (نور)
المكتبات هي المسؤولة عن صحة المعلومات كما أن الحقوق المعنوية للمعلومات متعلقة بها
برترین جستجوگر - پنجمین جشنواره رسانه های دیجیتال