An evaluation of identity in online social networking :
[Thesis]
Feizy, Roya
distinguishing fact from fiction
University of Sussex
2010
Ph.D.
University of Sussex
2010
Online social networks are understood to replicate the real life connections between people. As the technology matures, more people are joining social networking communities such as MySpace (www.myspace.com) and Facebook (www.facebook.com). These online communities provide the opportunity for individuals to present themselves and maintain social interactions through their profiles. Such traces in profiles can be used as evidence in deciding the level of trust with which to imbue individuals in making access control decisions. However, online profiles have serious implications over the reality of identity disclosure. There are many reasons why someone may choose not to reveal their true self, which sometimes leads to misidentification or deception. On one hand, the structure of online profiles allows anonymity, which gives users the opportunity to create a persona that may not represent their true identity. On the other hand, we often play multiple identities in different contexts where such behaviour is acceptable. However, realizing the context for each identity representation depends on the individual. As a result, some represented identities will be essentially real, if edited for public view, some will be disguised, and others will be fictitious or humorous. The millions of social network profiles, and billions of connections between them, make it difficult to formalize an automated approach to differentiate fact from fiction in online self-described identities. How can we be sure with whom we are interacting, and whether these individuals or groups are being truthful with the online identities they present to the rest of the community? What tools and techniques can be used to gather, organize, and explore the available data for informing the level of honesty that should be entrusted to an individual? Can we verify the validity of the identity automatically, based on the available information online? We aim to evaluate identity representation online and examine how identity can be verified in a less trusted online community. We propose a personality classifier model to identify a user‟s personality (such as expressive, valid, active, positive, popular, sociable and traceable) using traces of 2.2 million profile features collected from MySpace. We use data mining techniques and social network analysis to extract significant patterns in the data and network structure, and improve the classifier during the cycle of development. We evaluate our classifier model on profiles with known identities such as "real‟ and "fake‟. Our results indicate that by utilizing people‟s online, self-reported information, personality, and their network of friends and interactions, we are able to provide evidence for validating the type of identity in a manner that is both accurate and scalable.