Hilbert schemes of zero-dimensional subschemes of smooth varieties /
[Book]
Lothar Göttsche.
New York :
Springer-Verlag,
1994.
viii, 196 pages :
illustrations ;
24 cm.
Lecture notes in mathematics ;
1572
Includes bibliographical references (pages 184-191) and index.
1. Fundamental facts. 1.1. The Hilbert scheme. 1.2. The Weil conjectures. 1.3. The punctual Hilbert scheme -- 2. Computation of the Betti numbers of Hilbert schemes. 2.1. The local structure of [actual symbol not reproducible]. 2.2. A cell decomposition of [actual symbol not reproducible]. 2.3. Computation of the Betti numbers of S[superscript [n]] for a smooth surface S. 2.4. The Betti numbers of higher order Kummer varieties. 2.5. The Betti numbers of varieties of triangles -- 3. The varieties of second and higher order data. 3.1. The varieties of second order data. 3.2. Varieties of higher order data and applications. 3.3. Semple bundles and the formula for contacts with lines -- 4. The Chow ring of relative Hilbert schemes of projective bundles. 4.1. n-very ampleness, embeddings of the Hilbert scheme and the structure of Al[superscript n](P(E)). 4.2. Computation of the Chow ring of [actual symbol not reproducible]. 4.3. The Chow ring of [actual symbol not reproducible].
0
Hilbert schemes of zero-dimensional subschemes of smooth varieties.