conformal Cu2S, organic luminescent films, and PbSe nanocrystal superlattices
Carter, Sue A
2013
Carter, Sue A
2013
Three routes to more efficient photovoltaics using conformal Cu2S, organic luminescent films, and nanocrystalline PbSe films are outlined below. Properties of these materials are investigated experimentally and numerically in separate studies. In the first study, chemical vapor deposition (CVD) processes were used to fabricate Cu2S using hydrogen sulfide and the metal-organic precursor, KI5. The alternating exposure of mesoporous TiO2 and planar ZnO to the two precursors resulted in films that penetrated porous structures and deposited at a constant rate of 0.08nm/cycle over the temperature range 150C-400C. Sheet resistance and optical absorption measurements suggest the presence of a metallic copper-poor phase of less than 100nm thick forming at the Cu2S/substrate boundary. In a separate study, organic films doped with luminescent dyes were placed above CdTe/CdS solar cells to convert high energy photons to lower energies, better matched to the CdTe/CdS quantum efficiency peak. Efficiency improvements of up to 8.5% were obtained after optimizing dye concentration, dye chemistry, and the host material. Long-term stability tests show that the organic films are stable for at least 5000 hours under 1 sun illumination provided that the dye is encapsulated in an oxygen and water free environment. Finally, a Monte Carlo model was developed to simulate electron and hole transport in nanocrystalline PbSe films. Transport is carried out as a series of thermally activated tunneling events between neighboring sites on a cubic lattice. Each site, representing an individual nanocrystal, is assigned a size-dependent electronic structure, and the effects of crystal size, charging, inter-crystal coupling, and energetic disorder on electron and hole mobilities/conductivities are investigated. Results of simulated field effect measurements confirm that electron mobilities and conductivities increase by an order of magnitude when the average nanocrystal diameter is increased in the 3-5nm range. Electron mobilities/conductivities begin to decrease for average nanocrystal diameters above 6nm. Our model suggests that as crystal size increases, fewer hops are required to traverse a given film length and that site energy disorder significantly inhibits transport in films composed of smaller nanocrystals. The dip in transport above 6nm can be explained by a decrease in tunneling amplitudes and by carrier interactions, which become more frequent at larger crystal diameters. Using a nearly identical set of parameter values as the electron simulations, hole simulations confirm experimental mobilities, which increase with nanocrystal size over two orders of magnitude.