Fundamentals of momentum, heat and mass transfer /
[Book]
James R. Welty, Department of Mechanical Engineering, Oregon State University, Gregory L. Rorrer, Department of Chemical Engineering, Oregon State University, David G. Foster, Department of Chemical Engineering, University of Rochester.
6th edition.
Hoboken, NJ :
Wiley,
[2015]
x, 758 pages :
illustrations ;
26 cm
Includes index.
Machine generated contents note: 1.1.Fluids and the Continuum -- 1.2.Properties at a Point -- 1.3.Point-to-Point Variation of Properties in a Fluid -- 1.4.Units -- 1.5.Compressibility -- 1.6.Surface Tension -- 2.1.Pressure Variation in a Static Fluid -- 2.2.Uniform Rectilinear Acceleration -- 2.3.Forces on Submerged Surfaces -- 2.4.Buoyancy -- 2.5.Closure -- 3.1.Fundamental Physical Laws -- 3.2.Fluid-Flow Fields: Lagrangian and Eulerian Representations -- 3.3.Steady and Unsteady Flows -- 3.4.Streamlines -- 3.5.Systems and Control Volumes -- 4.1.Integral Relation -- 4.2.Specific Forms of the Integral Expression -- 4.3.Closure -- 5.1.Integral Relation for Linear Momentum -- 5.2.Applications of the Integral Expression for Linear Momentum -- 5.3.Integral Relation for Moment of Momentum -- 5.4.Applications to Pumps and Turbines -- 5.5.Closure -- 6.1.Integral Relation for the Conservation of Energy -- 6.2.Applications of the Integral Expression -- 6.3.The Bernoulli Equation
Note continued: 11.2.Dimensional Analysis of Governing Differential Equations -- 11.3.The Buckingham Method -- 11.4.Geometric, Kinematic, and Dynamic Similarity -- 11.5.Model Theory -- 11.6.Closure -- 12.1.Reynolds's Experiment -- 12.2.Drag -- 12.3.The Boundary-Layer Concept -- 12.4.The Boundary-Layer Equations -- 12.5.Blasius's Solution for the Laminar Boundary Layer on a Flat Plate -- 12.6.Flow with a Pressure Gradient -- 12.7.von Kármán Momentum Integral Analysis -- 12.8.Description of Turbulence -- 12.9.Turbulent Shearing Stresses -- 12.10.The Mixing-Length Hypothesis -- 12.11.Velocity Distribution from the Mixing-Length Theory -- 12.12.The Universal Velocity Distribution -- 12.13.Further Empirical Relations for Turbulent Flow -- 12.14.The Turbulent Boundary Layer on a Flat Plate -- 12.15.Factors Affecting the Transition from Laminar to Turbulent Flow -- 12.16.Closure -- 13.1.Dimensional Analysis of Conduit Flow
Note continued: 13.2.Friction Factors for Fully Developed Laminar, Turbulent, and Transition Flow in Circular Conduits -- 13.3.Friction Factor and Head-Loss Determination for Pipe Flow -- 13.4.Pipe-Flow Analysis -- 13.5.Friction Factors for Flow in the Entrance to a Circular Conduit -- 13.6.Closure -- 14.1.Centrifugal Pumps -- 14.2.Scaling Laws for Pumps and Fans -- 14.3.Axial- and Mixed-Flow Pump Configurations -- 14.4.Turbines -- 14.5.Closure -- 15.1.Conduction -- 15.2.Thermal Conductivity -- 15.3.Convection -- 15.4.Radiation -- 15.5.Combined Mechanisms of Heat Transfer -- 15.6.Closure -- 16.1.The General Differential Equation for Energy Transfer -- 16.2.Special Forms of the Differential Energy Equation -- 16.3.Commonly Encountered Boundary Conditions -- 16.4.Closure -- 17.1.One-Dimensional Conduction -- 17.2.One-Dimensional Conduction with Internal Generation of Energy -- 17.3.Heat Transfer from Extended Surfaces -- 17.4.Two- and Three-Dimensional Systems
Note continued: 17.5.Closure -- 18.1.Analytical Solutions -- 18.2.Temperature-Time Charts for Simple Geometric Shapes -- 18.3.Numerical Methods for Transient Conduction Analysis -- 18.4.An Integral Method for One-Dimensional Unsteady Conduction -- 18.5.Closure -- 19.1.Fundamental Considerations in Convective Heat Transfer -- 19.2.Significant Parameters in Convective Heat Transfer -- 19.3.Dimensional Analysis of Convective Energy Transfer -- 19.4.Exact Analysis of the Laminar Boundary Layer -- 19.5.Approximate Integral Analysis of the Thermal Boundary Layer -- 19.6.Energy- and Momentum-Transfer Analogies -- 19.7.Turbulent Flow Considerations -- 19.8.Closure -- 20.1.Natural Convection -- 20.2.Forced Convection for Internal Flow -- 20.3.Forced Convection for External Flow -- 20.4.Closure -- 21.1.Boiling -- 21.2.Condensation -- 21.3.Closure -- 22.1.Types of Heat Exchangers -- 22.2.Single-Pass Heat-Exchanger Analysis: The Log-Mean Temperature Difference
Note continued: 22.3.Crossflow And Shell-and-Tube Heat-Exchanger Analysis -- 22.4.The Number-of-Transfer-Units (NTU) Method of Heat-Exchanger Analysis and Design -- 22.5.Additional Considerations in Heat-Exchanger Design -- 22.6.Closure -- 23.1.Nature of Radiation -- 23.2.Thermal Radiation -- 23.3.The Intensity of Radiation -- 23.4.Planck's Law of Radiation -- 23.5.Stefan-Boltzmann Law -- 23.6.Emissivity and Absorptivity of Solid Surfaces -- 23.7.Radiant Heat Transfer Between Black Bodies -- 23.8.Radiant Exchange in Black Enclosures -- 23.9.Radiant Exchange with Reradiating Surfaces Present -- 23.10.Radiant Heat Transfer Between Gray Surfaces -- 23.11.Radiation from Gases -- 23.12.The Radiation Heat-Transfer Coefficient -- 23.13.Closure -- 24.1.Molecular Mass Transfer -- 24.2.The Diffusion Coefficient -- 24.3.Convective Mass Transfer -- 24.4.Closure -- 25.1.The Differential Equation for Mass Transfer -- 25.2.Special Forms of the Differential Mass-Transfer Equation
Note continued: 25.3.Commonly Encountered Boundary Conditions -- 25.4.Steps for Modeling Processes Involving Molecular Diffusion -- 25.5.Closure -- 26.1.One-Dimensional Mass Transfer Independent of Chemical Reaction -- 26.2.One-Dimensional Systems Associated with Chemical Reaction -- 26.3.Two- and Three-Dimensional Systems -- 26.4.Simultaneous Momentum, Heat, and Mass Transfer -- 26.5.Closure -- 27.1.Unsteady-State Diffusion and Fick's Second Law -- 27.2.Transient Diffusion in a Semi-Infinite Medium -- 27.3.Transient Diffusion in a Finite-Dimensional Medium under Conditions of Negligible Surface Resistance -- 27.4.Concentration-Time Charts for Simple Geometric Shapes -- 27.5.Closure -- 28.1.Fundamental Considerations in Convective Mass Transfer -- 28.2.Significant Parameters in Convective Mass Transfer -- 28.3.Dimensional Analysis of Convective Mass Transfer -- 28.4.Exact Analysis of the Laminar Concentration Boundary Layer
Note continued: 28.5.Approximate Analysis of the Concentration Boundary Layer -- 28.6.Mass-, Energy-, and Momentum-Transfer Analogies -- 28.7.Models for Convective Mass-Transfer Coefficients -- 28.8.Closure -- 29.1.Equilibrium -- 29.2.Two-Resistance Theory -- 29.3.Closure -- 30.1.Mass Transfer to Plates, Spheres, and Cylinders -- 30.2.Mass Transfer Involving Flow Through Pipes -- 30.3.Mass Transfer in Wetted-Wall Columns -- 30.4.Mass Transfer in Packed and Fluidized Beds -- 30.5.Gas-Liquid Mass Transfer in Bubble Columns and Stirred Tanks -- 30.6.Capacity Coefficients for Packed Towers -- 30.7.Steps for Modeling Mass-Transfer Processes Involving Convection -- 30.8.Closure -- 31.1.Types of Mass-Transfer Equipment -- 31.2.Gas-Liquid Mass-Transfer Operations in Well-Mixed Tanks -- 31.3.Mass Balances for Continuous-Contact Towers: Operating-Line Equations -- 31.4.Enthalpy Balances for Continuous-Contacts Towers -- 31.5.Mass-Transfer Capacity Coefficients
Note continued: 6.4.Closure -- 7.1.Newton's Viscosity Relation -- 7.2.Non-Newtonian Fluids -- 7.3.Viscosity -- 7.4.Shear Stress in Multidimensional Laminar Flows of a Newtonian Fluid -- 7.5.Closure -- 8.1.Fully Developed Laminar Flow in a Circular Conduit of Constant Cross Section -- 8.2.Laminar Flow of a Newtonian Fluid Down an Inclined-Plane Surface -- 8.3.Closure -- 9.1.The Differential Continuity Equation -- 9.2.Navier-Stokes Equations -- 9.3.Bernoulli's Equation -- 9.4.Spherical Coordinate Forms of The Navier-Stokes Equations -- 9.5.Closure -- 10.1.Fluid Rotation at a Point -- 10.2.The Stream Function -- 10.3.Inviscid, Irrotational Flow about an Infinite Cylinder -- 10.4.Irrotational Flow, the Velocity Potential -- 10.5.Total Head in Irrotational Flow -- 10.6.Utilization of Potential Flow -- 10.7.Potential Flow Analysis-Simple Plane Flow Cases -- 10.8.Potential Flow Analysis-Superposition -- 10.9.Closure -- 11.1.Dimensions
0
0
0
0
0
0
0
0
"Fundamentals of Momentum, Heat and Mass Transfer, 6th Edition provides a unified treatment of momentum transfer (fluid mechanics), heat transfer and mass transfer. The new edition has been updated to include more modern examples, problems, and illustrations with real world applications. The treatment of the three areas of transport phenomena is done sequentially. The subjects of momentum, heat, and mass transfer are introduced, in that order, and appropriate analysis tools are developed"--
Fundamentals of momentum, heat and mass transfer.
9781118804292
Fluid mechanics.
Heat-- Transmission.
Mass transfer.
Fluid mechanics.
Heat-- Transmission.
Mass transfer.
TECHNOLOGY & ENGINEERING-- Chemical & Biochemical.