8 Conversion of Analog Signals to Digital Format -- 8.1.Sampling of Low-Pass Signals -- 8.1.1.Nyquist-Shannon Sampling Theorem -- 8.1.2.DFT of the Sampled Sequence -- 8.1.3.Reconstruction of the Analog Signal -- 8.1.4.Practical Sampling Techniques -- 8.2.Aliasing -- Experiment 8.1 Natural Sampling of a LP Random Signal -- 8.3.Digitization of Analog Signals -- 8.3.1.Quantization -- 8.3.2.Coding of Quantized Samples -- 8.3.3.Errors Introduced by Quantization Process -- Experiment 8.2 Study of m-Bit Quantization Errors -- 8.3.4.Quantization Noise -- 8.4.Pulse Code Modulation -- 8.4.1.Nonuniform Quantization -- 8.5.Differential Pulse Code Modulation -- 8.6.Oversampling in Analog-to-Digital Conversion -- 8.7.Delta Modulation -- 8.7.1.Slope Overload and Granular Noise -- 8.7.2.Adaptive Delta Modulation -- 8.7.3.Continuously Variable Slope Delta Modulation -- 8.7.4.Quantization Noise -- Experiment 8.3 Delta Modulation -- 8.8.Sigma-Delta Modulation -- 8.8.1.First-Order Sigma-Delta Modulation -- 8.8.2.Noise Performance -- Experiment 8.4 Sigma-Delta Modulation -- 8.9.Sampling Theorem for Bandpass Signals -- Experiment 8.5 Natural Sampling of a BP Random Signal -- 8.9.1.BP Sampling in Digital Receivers -- Final Remarks -- Further Readings -- Problems -- MATLAB Problems -- ch. 9 Digital Baseband Modulation -- 9.1.Pulse Amplitude Modulation -- 9.2.Binary Line-Coding Techniques -- 9.3.Spectra of Digital Baseband Signals -- 9.3.1.Power Spectral Density of Random Pulse Trains -- 9.3.2.Spectra of Binary Line Codes -- Experiment 9.1 Waveforms and Spectra of Several Line-Coding Schemes -- 9.4.Bandwidth of Digital Baseband Signals -- 9.5.Spectral and Power Out-of-Band Plots -- 9.6.Block Line Codes -- 9.6.1.Binary Block Codes -- 9.6.2.Multilevel Block Codes -- 9.7.Scrambling -- 9.7.1.Frame-Synchronous Scrambler -- 9.7.2.SONET Scrambler -- 9.7.3.Self-Synchronous Scrambler --
Machine generated contents note: ch. 1 Introduction -- 1.1.Elements of a Communication System -- 1.2.Communication Channels -- 1.2.1.Coaxial Cable -- 1.2.2.Optical Fibers -- 1.2.3.Radio Channels -- 1.3.Analog and Digital Communication Systems -- 1.3.1.Digital Communication Systems -- 1.3.2.Why Digital Transmission? -- 1.4.History of Communications -- 1.4.1.Wireless Communications -- 1.5.Key Themes and Drivers -- Final Remarks -- Further Readings -- ch. 2 Review of Signals and Linear Systems -- 2.1.Basic Signal Concepts -- 2.1.1.Some Useful Basic Signals -- 2.1.2.Energy and Power Signals -- 2.1.3.Logarithmic Power Calculations -- 2.1.4.Some Basic Operations on Signals -- 2.2.Basic System Concepts -- 2.2.1.Classification of Systems -- 2.2.2.Characterization of LTI Systems -- 2.3.Frequency Domain Representation -- 2.4.Fourier Series -- 2.4.1.Trigonometric Fourier Series -- 2.4.2.Parseval's Theorem -- 2.4.3.Convergence of Fourier Series -- 2.5.Fourier Transform -- 2.5.1.Fourier Transforms of Some Common Signals -- 2.5.2.Properties of Fourier Transform -- 2.5.3.Fourier Transforms of Periodic Signals -- 2.6.Time-Bandwidth Product -- 2.7.Transmission of Signals Through LTI Systems -- 2.7.1.Distortionless Transmission -- 2.8.LTI Systems as Frequency Selective Filters -- 2.8.1.Ideal Filters -- 2.8.2.Realizable Approximations to Ideal Filters -- 2.8.3.Analog Filter Design Using MATLAB -- 2.9.Power Spectral Density -- 2.9.1.Time-Average Autocorrelation Function -- 2.9.2.Relationship Between Input and Output Power Spectral Densities -- 2.10.Frequency Response Characteristics of Transmission Media -- 2.10.1.Twisted Wire Pairs -- 2.10.2.Coaxial Cable -- 2.11.Fourier Transforms for Discrete-Time Signals -- Final Remarks -- Further Readings -- Problems -- MATLAB Problems -- ch. 3 Simulation of Communication Systems Using MATLAB/Simulink -- 3.1.Getting Started in Simulink -- 3.1.1.Solvers -- 3.2.Modeling in Simulink -- 3.2.1.Subsystems -- 3.3.Simulation of Signal and Noise Sources -- 3.3.1.Deterministic Signals -- 3.3.2.Random Signals -- 3.3.3.Modeling of AWGN Channel -- 3.4.Modeling of Communication Systems -- 3.4.1.Time-Domain Modeling -- 3.4.2.Transform-Domain Description -- 3.5.Displaying Signals in Frequency Domain -- 3.6.Using Simulink with MATLAB -- 3.6.1.Running Simulations from MATLAB -- Final Remarks -- Further Readings -- ch. 4 Amplitude Modulation -- 4.1.Low-Pass and Bandpass Signals -- 4.2.Double-Sideband Suppressed-Carrier AM -- 4.2.1.Spectrum of the DSB-SC AM Signal -- 4.2.2.Demodulation of DSB-SC AM Signals -- Experiment 4.1 DSB-SC AM Modulation and Demodulation -- 4.3.Conventional Amplitude Modulation -- 4.3.1.Spectrum of the Conventional AM Signal -- 4.3.2.Demodulation of Conventional AM Signal -- Experiment 4.2 Conventional AM Modulation and Demodulation -- 4.4.Alternative Representations for BP Signals and Systems -- 4.4.1.Frequency Spectrum of Complex Envelope and Analytic Representations -- 4.4.2.Complex Envelope Representation of BP Systems -- 4.5.Single-Sideband AM -- 4.5.1.Demodulation of SSB-AM Signals -- Experiment 4.3 SSB-AM Modulation and Demodulation -- 4.6.Vestigial-Sideband AM -- 4.7.Quadrature Multiplexing -- 4.8.Multiplexing -- 4.8.1.Frequency Division Multiplexing -- 4.9.Frequency Translation and Selection -- 4.9.1.Down-Conversion Mixer -- 4.9.2.Image-Reject Mixers -- 4.10.Communication Receivers -- 4.10.1.Superheterodyne Receivers -- 4.10.2.Direct-Conversion Receivers -- 4.10.3.Low-IF Receiver Architectures -- Final Remarks -- Further Readings -- Problems -- MATLAB Problems -- Appendix 4A Hilbert Transform -- ch. 5 Angle Modulation -- 5.1.FM and PM Signals -- 5.1.1.FM and PM Signals with Sinusoidal Modulating Signal -- 5.1.2.Power in Angle-Modulated Signal -- 5.2.Spectrum of Angle-Modulated Signals -- 5.2.1.Bandwidth of a Sinusoidally Modulated FM Signal -- 5.2.2.Bandwidth of an FM Signal Modulated by Arbitrary Message Signal -- 5.3.Narrowband FM -- 5.4.Demodulation of Angle-Modulated Signals -- 5.4.1.Bandpass Limiter -- 5.4.2.Frequency Discriminator -- Experiment 5.1 Simulink Model of an FM System with Frequency Discriminator -- Experiment 5.2 FM Demodulation with Balanced Slope Detector -- 5.4.3.Phase-shift Discriminator: Quadrature Detector -- 5.5.Phase-Locked Loop -- 5.5.1.Analog Phase-Locked Loop -- 5.5.2.APLL Linear Model -- 5.5.3.First-Order PLL -- Experiment 5.3 First-Order PLL -- 5.5.4.Second-Order PLL -- Experiment 5.4 Second-Order PLL -- 5.5.5.Acquisition Process: APLL in the Unlocked State -- 5.6.PLL as FM Demodulator -- Experiment 5.5 PLL as FM Demodulator -- 5.7.FM Broadcasting -- 5.7.1.FM Stereo -- 5.8.Analog Television -- 5.8.1.Black-and-White Image -- 5.8.2.Black-and-White Television -- 5.8.3.Color Television -- 5.8.4.Multichannel Television Sound -- Final Remarks -- Further Readings -- Problems -- MATLAB Problems -- ch. 6 Probability and Random Processes -- 6.1.Probability Concepts -- 6.1.1.Relative Frequency -- 6.1.2.Probability Axioms -- 6.1.3.Union Bound -- 6.1.4.Conditional Probability -- 6.2.Random Variables -- 6.2.1.Discrete Random Variables -- 6.2.2.Some Common Discrete Random Variables -- 6.3.Continuous Random Variables -- 6.3.1.Some Common Continuous Random Variables -- 6.3.2.PDFs for Discrete and Mixed Random Variables -- 6.4.Functions of a Random Variable -- 6.4.1.Case I: g(x) Monotonically Increasing or Decreasing -- 6.4.2.Case II: Arbitrary g(x) -- 6.5.Statistics of Random Variables -- 6.5.1.Moments and Characteristic Functions -- 6.6.Pairs of Random Variables -- 6.6.1.Marginal Distributions -- 6.6.2.Function of Two Random Variables: Expected Values -- 6.7.Conditional Distributions -- 6.7.1.Conditional Expected Values -- 6.7.2.Independent Random Variables -- 6.8.Jointly Gaussian Random Variables -- 6.8.1.Two Functions of Two Random Variables -- 6.8.2.Central Limit Theorem -- 6.9.Random Processes: Introduction -- 6.9.1.Characterization of a Random Process -- 6.9.2.Stationary Random Processes -- 6.9.3.Wide-Sense Stationary Random Processes -- 6.9.4.Ergodic Random Processes -- 6.9.5.Properties of the Autocorrelation Function -- 6.9.6.Uncorrelated, Orthogonal, and Independent Random Processes -- 6.10.Power Spectrum of a Random Process -- 6.10.1.Wiener-Khinchin Theorem -- 6.10.2.Transmission of Random Signals Through Linear Time-Invariant Systems -- 6.11.Some Important Random Processes -- 6.11.1.Gaussian Random Process -- 6.11.2.White Gaussian Noise -- 6.11.3.Filtered White Gaussian Noise -- 6.12.Narrowband Noise -- 6.12.1.Narrowband White Gaussian Noise -- 6.12.2.Envelope of Sine Wave in Narrowband Noise -- 6.13.Noise Sources in Communication Systems -- 6.13.1.Thermal Noise -- 6.13.2.Available Power -- 6.13.3.Shot Noise -- 6.14.Characterization of System Noise -- 6.14.1.Noise Factor and Noise Figure -- 6.14.2.Effective Input Noise Temperature of a Subsystem -- 6.14.3.Noise Figure of a Cascade of Subsystems -- 6.14.4.Noise Factor of a Lossy Two-Port Network -- 6.15.MATLAB Simulation of Random Processes -- 6.15.1.Generating Arbitrary PDF Random Variables -- 6.15.2.Autocorrelation Function and Spectral Density -- 6.15.3.Samples of White Gaussian Noise -- Final Remarks -- Further Readings -- Problems -- MATLAB Problems -- ch. 7 Noise Performance of Analog Communication Systems -- 7.1.Noise Performance of Baseband Systems -- 7.2.Effect of Noise on the Performance of AM Systems -- 7.2.1.Noise Performance of DSB-SC -- Experiment 7.1 Noise Performance of a DSB-SC AM System -- 7.2.2.Noise Performance of SSB-AM -- Experiment 7.2 Noise Performance of an SSB-AM System -- 7.2.3.Noise Performance of Conventional AM -- Experiment 7.3 Noise Performance of Conventional AM System -- 7.3.Noise Performance of Angle-Modulation Systems -- 7.3.1.High-CNR Operation -- 7.3.2.FM System Operation: Low-CNR Case -- Experiment 7.4 Noise Performance of an FM System -- 7.4.Preemphasis and Deemphasis -- 7.5.Comparison of Analog Modulation Systems -- 7.6.Link Design -- 7.6.1.Analog Repeater -- 7.6.2.Performance of Analog Communication System Using Cascade of Repeaters -- Final Remarks -- Further Readings -- Problems -- MATLAB Problems -- ch.
Note continued: 9.7.4.ATM Scrambler -- 9.8.Pulse Shaping to Improve Spectral Efficiency -- 9.8.1.Sinc Pulse -- 9.8.2.Raised Cosine Pulses -- Experiment 9.2 Effect of Channel on Baseband Digital Signals -- 9.9.Estimation of Allowable Bit Rate -- Final Remarks -- Further Readings -- Problems -- MATLAB Problems -- ch. 10 Detection of Baseband Signals in Noise -- 10.1.Binary Signal Detection in AWGN -- 10.1.1.Probability of Bit Error -- 10.2.The Matched Filter -- 10.2.1.Correlation Detectors -- 10.2.2.Performance of Binary Signaling Systems -- Experiment 10.1 Binary Antipodal System with Correlation Detector -- Experiment 10.2 Binary Antipodal Signaling System with Matched-Filter Detection -- 10.3.Vector Space Concepts -- 10.3.1.Finite Dimensional Vector Spaces -- 10.3.2.Inner-Product Vector Spaces -- 10.3.3.Gram-Schmidt Orthonormalization Procedure -- 10.4.Vector Space Representation of Signals and WGN -- 10.4.1.Vector Space Representation of Waveforms -- 10.4.2.Examples of Signal Constellations -- 10.4.3.Vector Space Representation of WGN -- 10.5.M-ary Signal Detection in AWGN -- 10.5.1.The Maximum a Posteriori Detector -- 10.5.2.The Maximum Likelihood Detector -- 10.5.3.MAP and ML Detector Implementations -- 10.5.4.Decision Regions -- 10.6.Error Performance of ML Detectors -- 10.6.1.Two-Signal Error Probability -- 10.6.2.M-Signal Error Probability -- 10.6.3.Relationship Between Bit and Symbol Error Rates -- 10.7.Error Performance of M-ary PAM Signals -- Experiment 10.3 Noise Performance of 4-PAM Signaling System -- Final Remarks -- Further Readings -- Problems -- MATLAB Problems -- ch. 11 Digital Information Transmission Using Carrier Modulation -- 11.1.Basic Concepts -- 11.1.1.Representations of Digitally Modulated Carrier Signals -- 11.2.Binary Amplitude-Shift Keying -- 11.2.1.Coherent Demodulation of BASK Signals -- Experiment 11.1 BASK Simulation and Performance Comparison -- 11.3.Binary Phase-Shift Keying -- 11.3.1.Coherent Demodulation of BPSK Signals -- Experiment 11.2 BPSK Simulation and Performance Comparison -- 11.4.Binary Frequency-Shift Keying -- 11.4.1.Orthogonality of BFSK Signals -- 11.4.2.Coherent Demodulation of BFSK Signals -- Experiment 11.3 BFSK Simulation and Performance Comparison -- 11.5.Differential Binary Phase-Shift Keying -- 11.6.Noncoherent Demodulation of Binary Digital Carrier Signals -- 11.6.1.Noncoherent Binary ASK -- 11.6.2.Noncoherent Binary FSK -- 11.7.Quadrature Modulation Schemes -- 11.7.1.Demodulation of Quadrature-Modulated Signals -- 11.7.2.QPSK -- Experiment 11.4 QPSK Simulation and Performance Comparison -- 11.7.3.Offset QPSK -- Experiment 11.5 OQPSK Simulation and Performance Comparison -- 11.7.4.M-ary Phase-Shift Keying -- 11.8.Minimum Shift Keying -- Experiment 11.6 MSK Simulation and Performance Comparison -- 11.9.Quadrature Amplitude Modulation -- Experiment 11.7 16-QAM System Simulation and Performance Comparison -- 11.10.Spectra of Quadrature Modulated Signals -- 11.10.1.Other Bandwidth Definitions -- 11.11.Comparison of Carrier Modulation Schemes -- Final Remarks -- Further Readings -- Problems -- MATLAB Problems -- ch. 12 Digital Signal Transmission Through Time Dispersive Channels -- 12.1.Transmission of PAM Signals Through Bandlimited Channels -- 12.1.1.Eye Diagrams -- 12.2.Nyquist's Criterion for Zero ISI -- 12.2.1.RC Pulse Signaling -- 12.3.Transmit and Receive Filters for Bandlimited AWGN Channels -- 12.3.1.Probability of Error Performance -- 12.4.Partial Response (Duobinary) Signaling -- 12.4.1.Detection of Duobinary Signals -- 12.4.2.Probability of Error Performance -- 12.5.Linear Equalizers -- 12.5.1.Zero-Forcing Equalizer -- 12.5.2.Minimum Mean-Square Error Equalizer -- 12.6.Adaptive Equalization -- 12.6.1.Least Mean Square Error Algorithm -- 12.7.Decision Feedback Equalizers -- 12.7.1.Coefficient Optimization -- 12.7.2.Channel Estimation -- 12.8.Performance of Linear and Decision Feedback Equalizers -- Final Remarks -- Further Readings -- Problems -- MATLAB Problems -- ch. 13 Digital Multiplexing and Synchronization -- 13.1.Digital Multiplexing -- 13.1.1.Plesiochronous Digital Hierarchies -- 13.1.2.Synchronization of PDH Signals -- 13.1.3.M12 Multiplexer: DS2 Frame -- 13.1.4.DS2 OH Bits -- 13.2.SONET -- 13.2.1.Multiplexing of SONET Signals -- 13.2.2.Synchronization of SONET Signals -- 13.3.Carrier Synchronization -- 13.3.1.Raised-Power Loops -- 13.3.2.Costas Loop -- 13.3.3.Effect of Noise on the Carrier Phase Estimation -- 13.3.4.Effect of Noise on the Performance of Carrier Synchronizers -- 13.4.Symbol Synchronization -- 13.4.1.Clock Recovery from NRZ Data -- 13.4.2.PLL for Clock Recovery -- Experiment 13.1 SONET OC-48 Clock and Data Recovery Using PLL -- 13.5.Frame Synchronization -- 13.5.1.Performance of a Frame Synchronizer -- 13.5.2.Choice of Frame Alignment Word -- Final Remarks -- Further Readings -- Problems -- MATLAB Problems -- ch. 14 Information Theory and Compression Techniques -- 14.1.Basic Concepts of Information Theory -- 14.1.1.Joint and Conditional Entropy -- 14.1.2.Differential Entropy -- 14.1.3.Mutual Information -- 14.2.Source Coding -- 14.2.1.Discrete Memoryless Sources -- 14.2.2.Shannon's Source Coding Theorem -- 14.3.Channel Coding -- 14.3.1.Modeling of Communication Channels -- 14.3.2.Capacity of a Communication Channel -- 14.3.3.Shannon's Channel Capacity Theorem -- 14.3.4.Another Channel Coding Theorem -- 14.4.Capacity of AWGN Channels -- 14.4.1.Shannon's Capacity Theorem for AWGN Channels -- 14.4.2.Capacity of Bandlimited AWGN Channels -- 14.4.3.Implications of Capacity Theorem for Bandlimited AWGN Channels -- 14.4.4.Power-Bandwidth Trade-Offs -- 14.5.Lossless Compression Techniques -- 14.5.1.Lossless Compression Techniques -- 14.5.2.Huffman Coding -- 14.5.3.Run-Length Encoding -- 14.5.4.Lempel-Ziv Coding -- 14.6.Image Compression: JPEG -- 14.6.1.Discrete Cosine Transform -- 14.6.2.JPEG Compression Standard -- 14.6.3.Subsampling of Chrominance Components -- 14.7.Digital Video Compression: MPEG -- 14.7.1.MPEG -- Final Remarks -- Further Readings -- Problems -- MATLAB Problems -- Appendix A Capacity of AWGN Channel: Alternative Proof -- ch. 15 Channel Coding Techniques -- 15.1.Block Codes -- 15.1.1.Linear Block Codes -- 15.1.2.Systematic Linear Block Codes -- 15.1.3.Error and Syndrome Vectors -- 15.2.Hard-Decision Decoding of Block Codes -- 15.2.1.Syndrome Decoding of Block Codes -- 15.2.2.Error-Detecting and Error-Correcting Capabilities -- 15.3.Cyclic Codes -- 15.3.1.Encoding of Systematic Cyclic Codes -- 15.3.2.Decoding of Cyclic Codes -- 15.3.3.Important Families of Block Codes -- 15.3.4.Cyclic Redundancy Check Codes -- 15.4.Error Correction Performance of Hard-Decision Decoded Block Codes -- 15.5.Soft-Decision Decoding of Block Codes -- 15.5.1.Soft-Decision Decoding Error Performance -- 15.5.2.Coding Gain -- 15.6.Convolutional Codes -- 15.6.1.Representation of Convolutional Codes -- 15.6.2.Decoding of Convolutional Codes -- 15.6.3.The Viterbi Algorithm -- 15.7.Error Performance of Convolutional Codes -- 15.7.1.Transfer Function of a Convolutional Code -- 15.7.2.Probability of Error for Convolutional Codes -- 15.7.3.Coding Gain -- 15.8.Turbo Codes -- 15.8.1.Turbo Decoding -- 15.8.2.Performance of Turbo Codes -- 15.9.Trellis-Coded Modulation -- 15.9.1.Decoding of TCM Codes -- Final Remarks -- Further Readings -- Problems -- MATLAB Problems.