Intro; Introduction: Structure and Philosophical Foundations of Hermann Weyl's Work on Space; History of This Joint Scientific Venture; Weyl and the Problem of Space; Overall View of Weyl's Positions on the Two Structural Moments of the Problem of Space; Late Developments of Weyl's Thought on Space; Plan of This Collection; Weyl's Intellectual Neighbourhoods and the Theory of Subjectivity; Weyl's Theory of the Continuum: Intuitionism and Dimensionality of Space; From Aprioristic to Physical Foundations of the Metric
3.1 Position et analyse du problème de l'espace chez Weyl3.1.1 Un point de départ kantien équivoque; 3.1.2 Un terminus ad quem riemannien idéalisé; 3.1.3 Reformulation du problème de l'expérience possible; 3.2 Terminus a quo riemannien de Husserl et son terminusad quem kantien; 3.2.1 Un mathématicien réfléchissant et généalogiste; 3.2.2 La position et l'analyse anti-kantiennes du problème de l'espace chez Husserl; 3.2.3 Évaluation critique de Riemann; 3.2.3.1 La portée révolutionnaire de cette théorie des variétés; 3.2.3.2 Portée et limite de la théorie de Gauss
3.2.3.3 Portée et limite de la formalisation riemannienne3.2.4 Objection de cercle vicieux et exigence d'une élucidation logique du problème de l'espace; 3.3 Inflexion de la position anti-kantienne de Husserl dans les leçons de 1907; 3.4 L'inéliminable résidu philosophique du problème de l'espace; 3.4.1 Exigence d'un approfondissement de l'esthétique transcendantale; 3.4.2 Un respect réciproque; 3.4.3 Le problème philosophique et logique plus général : l'individuation; 3.4.4 Des limites de cet approfondissement selon Weyl; Bibliographie; 4 Neighbourhoods and Intersubjectivity
4.1 Introduction4.2 Philosophical Neighbourhoods:Weyl's Historical Background; 4.3 Neighbourhoods in Mathematics: Weyl on the Continuum; 4.4 Neighbourhoods in the Theory of Subjectivity: Medicus (and Fichte) on `Man Among Men'; 4.5 Weyl's Analogies Between Mathematics and Subjectivity; 4.5.1 Some Recurrent Themes: Chopping, Love, and the Ego's Annihilation; 4.5.2 Analogy from the 1927 `Philosophie der Mathematik und Naturwissenschaft'; 4.5.3 Analogy from the 1923 `Mathematische Analyse des Raumproblems'; 4.6 Conclusion: Summary and Outlook; References
Weyl's Methodological Issues: Intuition, Symbolic Thought and Manifolds of PossibilitiesContents; Part I Weyl's Intellectual Neighborhoodsand the Theory of Subjectivity; 1 Internationalization of Scientific Activity in Spain in the Interwar Period; 1.1 Context: For the Regeneration of Spain; 1.2 Hermann Weyl in Spain; 1.2.1 The Course in Barcelona; 1.2.2 The Lectures in Madrid; 1.3 Publication of the Lectures; 1.4 Opening New Avenues of Research; References; 2 Hermann Weyl chez Gaston Bachelard; 3 Le résidu philosophique du problèmede l'espace chez Weyl et Husserl
0
8
8
8
8
This book investigates Hermann Weyl's work on the problem of space from the early 1920s onwards. It presents new material and opens the philosophical problem of space anew, crossing the disciplines of mathematics, history of science and philosophy. With a Kantian starting point Weyl asks: among all the infinitely many conceivable metrical spaces, which one applies to the physical world? In agreement with general relativity, Weyl acknowledges that the metric can quantitatively vary with the physical situation. Despite this freedom, Weyl "deduces", with group-theoretical technicalities, that there is only one "kind" of legitimate metric. This construction was then decisive for the development of gauge theories. Nevertheless, the question of the foundations of the metric of physical theories is only a piece of a wider epistemological problem. Contributing authors mark out the double trajectory that goes through Weyl's texts, from natural science to philosophy and conversely, always through the mediation of mathematics. Readers may trace the philosophical tradition to which Weyl refers and by which he is inspired (Kant, Husserl, Fichte, Leibniz, Becker etc.), and explore the mathematical tradition (Riemann, Helmholtz, Lie, Klein) that permitted Weyl to elaborate and solve his mathematical problem of space. Furthermore, this volume analyzes the role of the interlocutors with whom Weyl discussed the nature of physical space (Einstein, Cartan, De Sitter, Schrödinger, Eddington). This volume features the work of top specialists and will appeal to postgraduates and scholars in philosophy, the history of science, mathematics, or physics.