Part I -- Higher Categories: Introduction and Background -- An Introduction to Higher Categories -- Multi-simplicial techniques -- An Introduction to the three Segal-type models -- Techniques from 2-category theory -- Part II -- The Three Segal-Type Models and Segalic Pseudo-Functors -- Homotopically discrete n-fold categories -- The Definition of the three Segal-type models -- Properties of the Segal-type models -- Pseudo-functors modelling higher structures -- Part III -- Rigidification of Weakly Globular Tamsamani n-Categories by Simpler Ones -- Rigidifying weakly globular Tamsamani n-categories -- Part IV. Weakly globular n-fold categories as a model of weak n-categories -- Functoriality of homotopically discrete objects -- Weakly Globular n-Fold Categories as a Model of Weak n-Categories -- Conclusions and further directions -- A Proof of Lemma 0.1.4 -- References -- Index.
0
This monograph presents a new model of mathematical structures called weak n-categories. These structures find their motivation in a wide range of fields, from algebraic topology to mathematical physics, algebraic geometry and mathematical logic.