11.2.3 Integral Equations for the 3-D Dielectric Body.
Intro -- Advanced Computational Electromagnetic Methods and Applications -- Contents -- Preface -- Chapter 1 Novelties of Spectral Domain Analysis in Antenna Characterizations: Concept, Formulation, and Applications -- Chapter 2 High-Order FDTD Methods -- Chapter 3 GPU Acceleration of FDTD Method for Simulation of Microwave Circuits -- Chapter 4 Recent FDTD Advances for Electromagnetic Wave Propagation in the Ionosphere -- Chapter 5 Phi Coprocessor Acceleration Techniques in Computational Electromagnetic Methods -- Chapter 6 Domain Decomposition Methods for Finite Element Analysis of Large-Scale Electromagnetic Problems -- Chapter 7 High-Accuracy Computations for Electromagnetic Integral Equations -- Chapter 8 Fast Electromagnetic Solver Based on Randomized Pseudo-Skeleton Approximation -- Chapter 9 Computational Electromagnetics for the Evaluation of EMC Issues in Multicomponen tEnergy Systems -- Chapter 10 Manipulation of Electromagnetic Waves Based on New Unique Metamaterials: Theory and Applications -- Chapter 11 Time-Domain Integral Equation Method for Transient Problems -- Chapter 12 Statistical Methods and Computational Electromagnetics Applied to Human Exposure Assessment -- About the Authors -- Index -- 1.1 INTRODUCTION -- 1.2 ANTENNA RADIATION ANALYSIS IN THE SPECTRAL DOMAIN -- 1.3 OBTAINING THE PLANE WAVE SPECTRUM FROM FAR-FIELD PATTERNS AND RADIATED POWER -- 1.4 PLANE WAVE SPECTRUM COMPUTATION VIA FAST FOURIER TRANSFORM -- 1.5 COORDINATE TRANSFORMATIONS FOR GENERALIZED SIMULATION AND MEASUREMENT SYSTEMS -- 1.6 THEORETICAL VALIDATION OF NEAR-FIELD PREDICTION -- 1.7 SOME PRACTICAL EXAMPLES -- REFERENCES -- 2.1 FOURTH ORDER DIFFERENCES IN FDTD DISCRETE SPACE -- 2.2 SEAMLESS HYBRID S24/FDTD SIMULATIONS -- 2.3 ABSORBING BOUNDARY CONDITIONS -- 2.4 POINT CURRENT AND FIELD SOURCES -- 2.5 PLANE WAVE SOURCES -- 2.6 PEC MODELING.
1.7.1 A Symmetric Reflector Antenna -- 1.7.2 A Symmetric Reflector Antenna with an Elliptical Projected Aperture -- 1.7.3 Near-Field Prediction with Only Two Pattern Cuts -- 2.6.1 Planar PEC Boundaries -- 2.6.3 Critical Curved PEC Models -- 2.7.1 The Finite Volumes-Based FV24 Algorithm -- 2.7.2 High-Order Algorithms for Compact-FDTD Grids -- 3.2.1 Features of the FDTD Code -- 3.2.2 Input Parameters File -- 3.2.3 Main Program Layout -- 3.2.4 Field Updates -- 3.2.5 Outputs of the Program -- 3.3.1 Performance Optimization -- 3.3.2 Memory Accesses -- 3.3.3 Preparation of the GPU Device -- 3.3.4 Thread to Cell Mapping -- 3.3.5 The Time-Marching Loop -- 3.3.6 Field Updates -- 3.3.7 Source Updates and Output Calculations -- 4.3.1 FDTD Space Lattice -- 4.3.2 Example Updating Algorithm for TM Grid Cells -- 4.4.1 Collisional Plasma Algorithm -- 4.4.2 Two Example Validations -- 4.4.3 Summary of Performance -- 4.5.1 Overview -- 4.5.2 Mean Field Equations -- 4.5.3 Variance Field Equations -- 5.2.1 Hardware Configuration -- 5.2.2 Software Configuration -- 5.2.3 Compilation Environment -- 5.3.1 Performance Optimization -- 5.3.2 Memory Alignment -- 5.3.3 Parallel FDTD Implementation -- 5.3.4 Job Scheduling Strategy -- 5.3.5 FDTD Code Development -- 5.3.6 Matrix Multiplication -- 6.1.1 FETI Method with One Lagrange Multiplier -- 6.1.2 FETI Method with Two Lagrange Multipliers -- 6.1.3 Symbolic Formulation -- 6.2.1 FETI-DP Method with One Lagrange Multiplier -- 6.2.2 FETI-DP Method with Two Lagrange Multipliers -- 6.2.3 Comparison Between FETI-DP Methods with One and Two Lagrange Multipliers -- 6.3.1 Nonconformal Interface and Conformal Corner Meshes -- 6.3.2 Extension to Nonconformal Interface and Corner Meshes -- 6.4.1 Nonconformal Interface and Conformal Corner Meshes -- 6.4.2 Extension to Nonconformal Interface and Corner Meshes.
2.7 ADVANCED FORMS OF HIGH-ORDER FDTD ALGORITHMS -- REFERENCES -- 3.1 INTRODUCTION -- 3.2 FDTD CODE FOR MICROWAVE CIRCUIT SIMULATION -- 3.3 FDTD CODE USING CUDA -- 3.4 NUMERICAL RESULTS -- REFERENCES -- 4.1 INTRODUCTION -- 4.2 CURRENT STATE OF THE ART -- 4.3 FDTD EARTH-IONOSPHERE MODEL OVERVIEW -- 4.4 NEW MAGNETIZED IONOSPHERIC PLASMA ALGORITHM -- 4.5 STOCHASTIC FDTD (S-FDTD) -- 4.6 INPUT TO FDTD/S-FDTD EARTH-PLAMSA IONOSPHERE MODELS -- 4.7 CONCLUSIONS -- REFERENCES -- 5.1 INTRODUCTION -- 5.2 ENVIRONMENT REQUIREMENTS AND SETTINGS -- 5.3 CODE DEVELOPMENT -- 5.4 NUMERICAL RESULTS -- REFERENCES -- 6.1 FETI METHODS WITH ONE AND TWO LAGRANGE MULTIPLIERS -- 6.2 FETI-DP METHODS WITH ONE AND TWO LAGRANGE MULTIPLIERS -- 6.3 LM-BASED NONCONFORMAL FETI-DP METHOD -- 6.4 CE-BASED NONCONFORMAL FETI-DP METHOD -- 6.5 FETI-DP METHOD ENHANCED BY THE SECOND-ORDER TRANSMISSION CONDITION -- 6.6 HYBRID NONCONFORMAL FETI/CONFORMAL FETI-DP METHOD -- 6.7 NUMERICAL EXAMPLES -- 6.8 SUMMARY -- REFERENCES -- 7.1 NORMALIZED RESIDUAL ERROR -- 7.2 HIGH-ORDER TREATMENT OF SMOOTH TARGETS -- 7.3 THE DIPOLE ANTENNA -- 7.4 HIGH-ORDER TREATMENT OF WEDGE SINGULARITIES -- 7.5 HIGH-ORDER TREATMENT OF JUNCTIONS -- 7.7 PROSPECTS FOR CONTROLLED ACCURACY COMPUTATIONS IN THREE-DIMENSIONAL PROBLEMS -- 7.8 SUMMARY -- REFERENCES -- 8.1 INTRODUCTION -- 8.2 LOW RANK PROPERTY OF SUBMATRICES OF PARTITIONED IMPEDANCE MATRIX -- 8.3 PARTITIONING OF THE COMPUTATIONAL DOMAIN -- 8.4 LOW RANK MATRIX DECOMPOSITION -- 8.5 LOW RANK DECOMPOSITION OF MULTIPLE RIGHT SIDES -- 8.6 DIRECT SOLVER BASED ON BLOCK LU DECOMPOSITION -- 8.7 PARALLELIZATION VIA OPENMP AND BLAS LIBRARY -- 8.8 NUMERICAL EXAMPLES -- 8.9 SUMMARY -- REFERENCES -- 9.1 INTRODUCTION -- 9.2 PHYSICS-BASED MODELING FOR THE ANALYSIS OF THE MACHINE DRIVE -- 9.3 EQUIVALENT SOURCE MODELING -- 9.4 POWER CONVERTERS.
6.7.1 Wave Propagation in Free Space -- 6.7.2 Wave Propagation in PML Medium -- 6.7.3 Vivaldi Antenna Array -- 6.7.4 Vivaldi Antenna Array with a Large Scan Angle -- 6.7.5 NRL Vivaldi Antenna Array with Radome -- 6.7.6 Medium-Scale Two-Dimensional Microring Resonator -- 6.7.7 Full-Scale Three-Dimensional Double-Microring Resonator -- 8.4.1 Singular Value Decomposition -- 8.4.2 Randomized Projection Approach -- 8.4.3 Adaptive Cross Approximation (ACA) -- 8.4.4 Randomized Pseudo-Skeleton Approximation -- 8.8.1 Selection of the Sample Numbers -- 8.8.2 Accuracy of the Randomized Pseudo-Skeleton Approximation -- 8.8.3 Comparison with ACA -- 8.8.4 RCS of a PEC Sphere -- 8.8.5 Multiple Monostatic Scattering Analysis of an Airplane Model -- 8.8.6 Speed-Up of the Parallel Implementation -- 9.2.1 Multiscale Problems -- 9.2.2 Numerical Virtual Prototyping -- 9.3.1 Introduction Motor -- 9.3.2 DC Motor -- 9.3.3 Synchronous Generator -- 9.3.4 Cable Sets -- 9.3.5 Coupling of Machines -- 9.3.6 Whole System Setup -- 9.3.7 Generalization of the Equivalent Source Model -- 9.4.1 Modeling Approach -- 9.4.2 Simulation and Experiment -- 9.4.3 Applications of the Frequency Response Analysis of the Stray Field -- 10.2.1 Theory of Transform Optics -- 10.2.2 Invisibility Cloak Based on Transform Optics -- 10.2.3 Electromagnetic Concentrator Based on the Transform Optics -- 10.2.4 Reflectionless Waveguide Connector Based on Transform Optics -- 10.2.5 Multibeam Antenna Based on Transform Optics -- 10.3.1 Design and Analysis of Detached ZIML -- 10.3.2 Fabrication, Simulation, and Test of ZIML -- 10.4.1 Automatic Design Method of GRIN Metamaterial Lens -- 10.4.2 Numerical Simulations -- 10.4.3 Fabrication and Measurement -- 11.2.1 Integral Equations for the 3-D PEC Object -- 11.2.2 Integral Equations for 1-D and 2-D PEC Structures.
9.5 HIGH-FREQUENCY EQUIVALENT SOURCE MODELING -- 9.6 OPTIMIZATION OF POWER ELECTRONIC CONVERTERS USING PHYSICS-BASED MODELS -- 9.7 SUMMARY -- REFERENCES -- 10.1 INTRODUCTION -- 10.2 THEORY OF TRANSFORM OPTICS AND APPLICATIONS -- 10.3 A DETACHED ZERO INDEX METAMATERIAL LENS FOR ANTENNA GAIN ENHANCEMENT -- 10.4 AUTOMATIC DESIGN OF BROADBAND GRADIENT INDEX METAMATERIAL LENS FOR GAIN ENHANCEMENT OF CIRCULARLY POLARIZED ANTENNAS -- 10.5 CONCLUSIONS -- REFERENCES -- 11.1 INTRODUCTION -- 11.2 DERIVATIONS OF TIME-DOMAIN INTEGRAL EQUATIONS -- 11.3 DISCRETIZATION OF GOVERNING EQUATIONS -- 11.4 EVALUATION OF MATRIX ELEMENTS -- 11.5 EXTENSION TO MOVING OBJECTS -- 11.6 NUMERICAL IMPLEMENTATIONS -- 11.7 SUMMARY -- REFERENCES -- 12.1 INTRODUCTION -- 12.2 EXPOSURE ASSESSMENT USING FDTD AND THE CHALLENGE OF VARIABILITY -- 12.3 METAMODEL MODEL FOR UNCERTAINTY PROPAGATION -- 12.4 DESIGN OF EXPERIMENTS -- 12.5 SURROGATE MODEL VALIDATION -- 12.6 MODEL CONSTRUCTION AND REGRESSION -- 12.7 POLYNOMIAL CHAOS EXPANSIONS -- 12.8 KRIGING -- 12.9 CONCLUSION -- REFERENCES -- 1.2.1 From Maxwell's Equations to the Plane Wave Spectrum -- 1.2.2 The Plane Wave Spectrum and the Fourier Transform -- 1.2.3 Radiated Far Fields as a Spectrum of Plane Waves -- 1.3.1 Finding the True Far-Field Magnitudes -- 1.3.2 Plane Wave Spectrum Retrieval from Far-Field Patterns -- 1.4.1 Discretizing the Plane Wave Spectrum and the Electric Field Distribution -- 1.4.2 Proper Normalization of the Fast Fourier Transform -- 1.4.3 The Sampling Theorem and Spectral Analysis -- 1.4.4 Far-Field Sampling Rates -- 1.4.5 Interpolating the Far Fields -- 1.4.6 Subtle Issues When Implementing the FFT and iFFT Using Pre-Built Packages and Libraries -- 1.6.1 Rectangular Aperture Distribution -- 1.6.2 Circular Aperture Distribution -- 1.6.3 Axial Field Prediction of the Uniform Circular Aperture.
0
8
8
8
8
This new resource covers the latest developments in computational electromagnetic methods, with emphasis on cutting-edge applications. This book is designed to extend existing literature to the latest development in computational electromagnetic methods, which are of interest to readers in both academic and industrial areas. The topics include advanced techniques in MoM, FEM and FDTD, spectral domain method, GPU and Phi hardware acceleration, metamaterials, frequency and time domain integral equations, and statistics methods in bio-electromagnetics.