a volume in the encyclopedia of sustainability science and technology, second edition /
Timothy E. Lipman, Adam Z. Weber, editors.
New York, NY :
Springer,
2019.
1 online resource :
illustrations (some color).
Encyclopedia of sustainability science and technology series
Includes index.
Part 1: Fuel Cells -- Alkaline Membrane Fuel Cells -- Direct Hydrocarbon Solid Oxide Fuel Cells -- Fuel Cell Comparison to Alternate Technologies -- Fuel Cell Types and Their Electrochemistry -- Fuel Cells (SOFC): Alternative Approaches (Electroytes, Electrodes, Fuels) -- Fuel Cells, Introduction -- Membrane Electrolytes, from Perfluorosulfonic Acid (PFSA) to Hydrocarbon Ionomers -- Molten Carbonate Fuel Cells -- PEM Fuel Cell Materials: Costs, Performance and Durability -- PEM Fuel Cells and Platinum-Based Electrocatalysts -- PEM Fuel Cells, Materials and Design Development Challenges -- Phosphoric Acid Fuel Cells for Stationary Applications -- Polybenzimidazole Fuel Cell Technology -- Polymer Electrolyte (PE) Fuel Cell Systems -- Polymer Electrolyte Membrane (PEM) Fuel Cells, Automotive Applications -- Polymer Electrolyte Membrane Fuel Cells (PEM-FC) and Non-noble Metal Catalysts for Oxygen Reduction -- Proton Exchange Membrane Fuel Cells: High-Temperature, Low-Humidity Operation -- Solid Oxide Fuel Cell Materials: Durability, Reliability and Cost -- Solid Oxide Fuel Cells -- Solid Oxide Fuel Cells, Marketing Issues -- Solid Oxide Fuel Cells, Sustainability Aspects -- Part 2: Hydrogen Production Science and Technology -- Advances on Inorganic Membrane Reactors for Production of Hydrogen -- Biohydrogen Production -- Biohydrogen Production from Agricultural Residues -- Electrochemical Hydrogen Production -- Genetic Optimization of Microalgae for Hydrogen Production -- Hydrogen Production from Biological Sources -- Hydrogen Production from High-Temperature Fuel Cells -- Hydrogen Production Science and Technology -- Hydrogen Production through Pyrolysis -- Hydrogen via Direct Solar Production -- Hydrogen Production through Electrolysis -- Photo-catalytic Hydrogen Production.
0
The expected end of the "oil age" will lead to increasing focus and reliance on alternative energy conversion devices, among which fuel cells have the potential to play an important role. Not only can phosphoric acid and solid oxide fuel cells already efficiently convert today's fossil fuels, including methane, into electricity, but other types of fuel cells, such as polymer electrolyte membrane fuel cells, have the potential to become the cornerstones of a possible future hydrogen economy. This handbook offers concise yet comprehensive coverage of the current state of fuel cell research and identifies key areas for future investigation. Internationally renowned specialists provide authoritative introductions to a wide variety of fuel cell types and hydrogen production technologies, and discuss materials and components for these systems. Sustainability and marketing considerations are also covered, including comparisons of fuel cells with alternative technologies.