handle data-driven challenges in an Enterprise Big Data Lake /
Saurabh Gupta, Venkata Giri.
[Berkeley, CA] :
Apress,
2018.
1 online resource
Includes bibliographical references.
Intro; Table of Contents; About the Authors; About the Technical Reviewer; Acknowledgments; Foreword; Chapter 1: Introduction to Enterprise Data Lakes; Data explosion: the beginning; Big data ecosystem; Hadoop and MapReduce -- Early days; Evolution of Hadoop; History of Data Lake; Data Lake: the concept; Data lake architecture; Why Data Lake?; Data Lake Characteristics; Data lake vs. Data warehouse; How to achieve success with Data Lake?; Data governance and data operations; Data democratization with data lake; Fast Data -- Life beyond Big Data; Conclusion.
Centralization of Change DataAnalyzing a Centralized Data Store; Metadata: Data about Data; Structure of Data; Privacy/Sensitivity Information; Special Fields; Data Formats; Delimited Format; Avro File Format; Consumption and Checkpointing; Simple Checkpoint Mechanism; Parallelism; Merging and Consolidation; Design Considerations for Merge and Consolidate; Data Quality; Challenges; Design Aspects; Operational Aspects; Publishing to Kafka; Schema and Data; Sample Schema; Schema Repository; Multiple Topics and Partitioning; Sizing and Scaling; Tools; Conclusion.
Chapter 2: Data lake ingestion strategiesWhat is data ingestion?; Understand the data sources; Structured vs. Semi-structured vs. Unstructured data; Data ingestion framework parameters; ETL vs. ELT; Big Data Integration with Data Lake; Hadoop Distributed File System (HDFS); Copy files directly into HDFS; Batched data ingestion; Challenges and design considerations; Design considerations; Commercial ETL tools; Real-time ingestion; CDC design considerations; Example of CDC pipeline: Databus, LinkedIn's open-source solution; Apache Sqoop; Sqoop 1; Sqoop 2; How Sqoop works?
Chapter 4: Data Processing Strategies in Data LakesMapReduce Processing Framework; Motivation: Why MapReduce?; MapReduce V1 Refresher and Design Considerations; Yet Another Resource Negotiator -- YARN; YARN concepts; Hive; Hive -- Quick Refresher; Hive Components; Hive Metastore (a.k.a. HCatalog); Hive -- Design Considerations; Hive LLAP; Apache Pig; Pig Execution Architecture; Apache Spark; Why Spark?; Resilient Distributed Datasets (RDD); RDD Runtime Components; RDD Composition; Datasets and DataFrames; Bucketing, Sorting, and Partitioning; Deployment Modes of Spark Application.
Sqoop design considerationsNative ingestion utilities; Oracle copyToBDA; Greenplum gphdfs utility; Data transfer from Greenplum to using gpfdist; Ingest unstructured data into Hadoop; Apache Flume; Tiered architecture for convergent flow of events; Features and design considerations; Conclusion; Chapter 3: Capture Streaming Data with Change-Data-Capture; Change Data Capture Concepts; Strategies for Data Capture; Retention and Replay; Retention Period; Types of CDC; Incremental; Bulk; Hybrid; CDC -- Trade-offs; CDC Tools; Challenges; Downstream Propagation; Use Case.
0
8
8
8
8
Use this practical guide to successfully handle the challenges encountered when designing an enterprise data lake and learn industry best practices to resolve issues. When designing an enterprise data lake you often hit a roadblock when you must leave the comfort of the relational world and learn the nuances of handling non-relational data. Starting from sourcing data into the Hadoop ecosystem, you will go through stages that can bring up tough questions such as data processing, data querying, and security. Concepts such as change data capture and data streaming are covered. The book takes an end-to-end solution approach in a data lake environment that includes data security, high availability, data processing, data streaming, and more. Each chapter includes application of a concept, code snippets, and use case demonstrations to provide you with a practical approach. You will learn the concept, scope, application, and starting point. What You'll Learn: Get to know data lake architecture and design principles Implement data capture and streaming strategies Implement data processing strategies in Hadoop Understand the data lake security framework and availability model.
Springer Nature
com.springer.onix.9781484235225
9781484235218
Big data.
Electronic data processing-- Distributed processing-- Management.
Information storage and retrieval systems.
Big data.
Business mathematics & systems.
COMPUTERS-- Data Processing.
Databases.
Electronic data processing-- Distributed processing-- Management.