Notation -- 1913. Paul Erdös -- 1914. Martin Gardner -- 1915. General relativity and the absolute differential calculus -- 1916. Ostrowski's theorem -- 1917. Morse theory, but really Cantor -- 1918. Georg Cantor -- 1919. Brun's theorem -- 1920. Waring's problem -- 1921. Mordel's theorem -- 1922. Lindeberg condition -- 1923. The circle method -- 1924. The Banach-Tarski paradox -- 1925. The Schrödinger equation -- 1926. Ackermann's function -- 1927. William Lowell Putnam mathematical competition -- 1928. Random matrix theory -- 1929. Gödel's incompleteness theorems -- 1930. Ramsey theory -- 1931. The ergodic theorem -- 1932. The 3x + 1 problem -- 1933. Skewes's number -- 1934. Khinchin's constant -- 1935. Hubert's seventh problem -- 1936. Alan Turing -- 1937. Vinogradov's theorem -- 1938. Benford's law -- 1939. The power of positive thinking -- 1940. A mathematician's apology -- 1941. The foundation trilogy -- 1942. Zeros of [zeta](s) -- 1943. Breaking enigma -- 1944. Theory of games and economic behavior -- 1945. The Riemann hypothesis in function fields -- 1946. Monte Carlo method -- 1947. The simplex method -- 1948. Elementary proof of the prime number theorem -- 1949. Beurling's theorem -- 1950. Arrow's impossibility theorem -- 1951. Tennenbaum's proof of the irrationality of [square root]2 -- 1952. NSA founded -- 1953. The metropolis algorithm -- 1954. Kolmogorov-Arnold-Moser theorem -- 1955. Roth's theorem -- 1956. The GAGA principle -- 1957. The Ross program -- 1958. Smale's paradox -- 1959. QR decomposition -- 1960. The unreasonable effectiveness of mathematics -- 1961. Lorenz's nonperiodic flow -- 1962. The Gale-Shapley algorithm and the stable marriage problem -- 1963. Continuum hypothesis -- 1964. Principles of mathematical analysis -- 1965. Fast Fourier transform -- 1966. Class number one problem -- 1967. The Langlands program -- 1968. Atiyah-Singer index theorem -- 1969. Erdös numbers -- 1970. Hilbert's tenth problem -- 1971. Society for American Baseball Research -- 1972. Zaremba's conjecture -- 1973. Transcendence of e centennial -- 1974. Rubik's cube -- 1975. Szemerédi's theorem -- 1976. Four color theorem -- 1977. RSA encryption -- 1978. Mandelbrot set -- 1979. TEX -- 1980. Hilbert's third problem -- 1981. The Mason-Stothers theorem -- 1982. Two envelopes problem -- 1983. Julia Robinson -- 1984. 1984 -- 1985. The Jones polynomial -- 1986. Sudokus and look and say -- 1987. Primes, the Zeta function, randomness, and physics -- 1988. Mathematica -- 1989. PROMYS -- 1990. The Monty Hall problem -- 1991. arXiv -- 1992. Monstrous moonshine -- 1993. The 15-theorem -- 1994. AIM -- 1995. Fermat's last theorem -- 1996. Great Internet Mersenne Prime Search (GIMPS) -- 1997. The Nobel Prize of Merton and Scholes -- 1998. The Kepler conjecture -- 1999. Baire category theorem -- 2000. R -- 2001. Colin Hughes Founds Project Euler -- 2002. PRIMES in P -- 2003. Poincaré conjecture -- 2004. Primes in arithmetic progression -- 2005. William Stein developed sage -- 2006. The strong perfect graph theorem -- 2007. Flatland -- 2008. 100th anniversary of the t-Test -- 2009. 100th anniversary of Brouwer's fixed-point theorem -- 2010. Carmichael numbers -- 2011. 100th anniversary of Egorov's theorem -- 2012. National Museum of Mathematics.
0
"This book is an outgrowth of a collection of 100 problems chosen to celebrate the 100th anniversary of the undergraduate math honor society Pi Mu Epsilon. Each chapter describes a problem or event, the progress made, and connections to entries from other years or other parts of mathematics. In places, some knowledge of analysis or algebra, number theory or probability will be helpful. Put together, these problems will be appealing and accessible to energetic and enthusiastic math majors and aficionados of all stripes." -- Publisher's description.