Background -- The Motion of Wave Packets -- The Schrodinger Wave Equation -- Schrodinger Theory -- Harmonic Oscillator Calculations -- Further Interpretation of Wave Eq -- The Eigenvalue Problem -- Spherical Harmonics -- l-Step Operators -- The Radial Functions -- Shape Invariant Potentials -- The Darboux Method -- The Vector Space Interpretation -- The Angular Momentum Eigenvalue Rigid Rotators -- Transformation Theory -- Another Example.-Transformation Theory -- Time dependence of a. -- Perturbation Theory -- The Slightly Anharmonic -- Example 1 -- Perturbation Theory for- The Case of Neary Degenerate Level -- Magnetic Field Peturbations -- Fine Structure and Zeeman. -- Angular Momentum Coupling Theory -- Symmetry Properties -- Invariance of. -- The Clebsch-Gordon Series -- Spherical Tensor Operators -- The Wigner-Eckart Theorem -- Nuclear Hyperfine Structure -- Angular Momentum. -- Perturbed Coulomb Problem -- The Wkb Approximation Applications of WKB -- The Two-Electron Atom -- n-Identical Particle.-The Variational Method -- Introducing Scattering Theory -- The Rayleigh-Faxen-Holtzman Parital. -- A Specific Example.
0
Intended for beginning graduate students, this text takes the reader from the familiar coordinate representation of quantum mechanics to the modern algebraic approach, emphsizing symmetry principles throughout. After an introduction of the basic postulates and techniques, the book discusses time-independent perturbation theory, angular momentum, identical particles, scattering theory, and time-dependent perturbation theory. It concludes with several lectures on relativistic quantum mechanics and on many-body theory.