Inorganic Oxide-attached Metal Catalysts.- 1. Introduction.- 2. General Features of Homogeneous and Heterogeneous Catalysts.- 3. General Aspects of the Development of Attached Metal Catalysts.- 3.1. First Generation Attached Catalysts.- 3.2. Second Generation Attached Catalysts.- 3.3. Third Generation Attached Catalysts.- 4. Physical Techniques for the Characterization of Surface-attached Species.- 5. Polymers and Inorganic Oxides as Supports.- 6. Surface Hydroxyl Groups on Inorganic Oxides.- 6.1. Silica.- 6.2. Alumina.- 6.3. Silica-alumina.- 6.4. Zeolites.- 6.5. Titania.- 6.6. Other Inorganic Oxides.- 7. The Functionalization of Inorganic Oxide Surfaces.- 7.1. Silica.- 7.2. Alumina and Zeolites.- 7.3. Stannic Oxide and Carbon.- 8. Attached Metal Complex Catalysts.- 8.1. Metal Complexes Attached via Functional Ligands.- 8.2. Transition Metal Complexes Attached Directly to Inorganic Oxide Surfaces.- 9. Tailored Metal Catalysts.- 9.1. Multistep Attached Metal Catalysts.- 9.2. Transition Metal Hydride Catalysts.- 9.3. Attached Metal Oxide Catalysts.- 9.3.1. Surface Molybdenum Monomers.- 9.3.2. Surface Molybdenum Dimers.- 9.3.3. Oriented Mo03 Phases on Graphite.- 9.3.4. Surface Chromium Monomers and Dimers.- 9.3.5. Two-dimensional Surface CrIII Phase Attached onto SiO2.- 9.3.6. Attached Tungsten Monomers.- 9.3.7. Surface Cobalt Species.- 10. Concluding Remarks.- References.- Polymer-attached Catalysts.- 1. Introduction.- 2. Polymer-anchored Catalysts.- 2.1. Preparation and Characterization.- 2.2. The Influence of the Polymer Matrix on Catalysis.- 2.2.1. Isolation of Active Sites.- 2.2.2. Promotion of Coordinative Unsaturation.- 2.2.3. Concentration of the Ligand.- 2.2.4. Stabilization of Catalysts.- 2.2.5. Effect of Substrate Size and Shape on Selectivity.- 2.3. Effect of the Polymer 'Field'.- 2.3.1. Hydrophobic 'Field'.- 2.3.2. Electrostatic 'Field'.- 2.3.3. Asymmetric 'Field'.- 2.4. Multifunctional Catalysts.- 2.4.1. Cooperative Catalysis.- 2.4.2. Multistep Catalysis.- 3. Polymer-protected Colloidal Catalysts.- 3.1. Preparation and Characterization.- 3.2. Characteristic Properties of Colloidal Catalysts.- 3.2.1. Surface Area.- 3.2.2. Particle Size.- 3.2.3. Effect of Protective Polymers.- 3.3. Colloidal Catalysts Protected by Functionalized Polymers.- 4. Concluding Remarks.- References.- The Preparation of Heterogeneous Catalysts from Mononuclear Carbonyl Complexes on Inorganic Supports.- General Aspects of Catalyst Preparation.- 2.1. Support Materials.- 2.1.1. Silica.- 2.1.2. Alumina.- 2.1.3. Zeolites.- 2.1.4. Other Supports.- 2.2. Introduction of the Carbonyl Complex.- 2.3. Catalyst Activation.- 3. Group VI Carbonyl Complexes.- 3.1. Preparation and Characterization.- 3.1.1. Mo(CO)6-Alumina.- 3.1.2. Cr(CO)6-Alumina.- 3.1.3. W(CO)6-Alumina.- 3.1.4. Mo(CO)6-Silica.- 3.1.5. Cr(CO)6-Silica.- 3.1.6. W(CO)6-Silica.- 3.1.7. Mo(CO)6-Zeolite Y.- 3.1.8. Cr(CO)6-Zeolite Y.- 3.1.9. W(CO)6-Zeolite Y.- 3.1.10. Mo(CO)6-Magnesia.- 3.1.11. Cr(CO)6- and W(CO)6 Magnesia.- 3.2. Catalytic Properties.- 3.2.1. Olefin Metathesis.- 3.2.2. Olefin Polymerization.- 3.2.3. Olefin Hydrogenation.- 3.2.4. Hydrogenolysis of Alkanes.- 3.2.5. Deuterium Exchange Reactions.- 3.2.6. Hydrogenation of Carbon Monoxide.- 3.2.7. Hydrodesulphurization.- 4. Group VIII Carbonyl Complexes.- 4.1. Preparation and Characterization.- 4.1.1. Fe(CO)5-Alumina.- 4.1.2. Fe(CO)5-Magnesia.- 4.1.3. Fe(CO)5-Zeolite Y.- 4.1.4. Fe(CO)5-Graphite.- 4.1.5. Ni(CO)4-Alumina.- 4.1.6. Ni(CO)4-Zeolite.- 4.2. Catalytic Properties.- 5. Group V Carbonyl Complexes.- 6. Concluding Remarks.- 7. Literature Update.- References.- Surface-supported Metal Clusters and their Catalysis in CO-based Reactions.- 1. Introduction.- 2. Preparation and Characterization of Surface-supported Metal Clusters.- 2.1. Rhodium and Platinum Carbonyl Clusters Impregnated on Metal Oxides.- 2.2. Ruthenium, Osmium and Iridium Carbonyl Clusters Impregnated on Metal Oxides.- 2.3. Iron, Cobalt and Nickel Carbonyl Clusters Impregnated on Metal Oxides.- 2.4. Zeolite-entrapped Cluster Catalysts.- 2.5. Reactivity and Catalysis of Surface-supported Metal Cluster Species.- 2.6. Bimetallic Clusters Impregnated on Metal Oxides.- 3. Selectivity Aspects of Fischer-Tropsch (F-T) Synthesis with Supported Metal Carbonyls.- 4. Carbonylation Reactions Catalyzed by Cluster-impregnated Catalysts.- 4.1. Activities and Selectivities in Ethylene and Propylene Hydro- formylation Catalyzed by Cluster-derived Catalysts from Different Carbonyl Clusters on Zinc Oxide.- 4.2. Effect of Metal Oxide Support on Catalytic Behavior of Rhodium Clusters.- 4.3. Bimetallic Rhodium-Cobalt and Cobalt Carbonyl Clusters Supported on Zinc Oxide and Carbon.- 5. Synthesis of Oxygenated Carbon Compounds from Synthesis Gas.- 5.1. Rhodium Carbonyl Cluster-derived Catalysts in CO-H2 Reactions.- 5.2. The Role of Bifunctional Metal Oxides in Modifying the Formation of Oxygenated Species by Rhodium Cluster-impregnated Catalysts.- 5.3. Bimetallic Rh-Co Cluster-derived Catalysts in CO-H2 Conversion.- 5.4. Methanol Synthesis by Rhodium, Platinum and Iridium Cluster-impregnated Catalysts.- References.- Asymmetrically Modified Nickel Catalysts.- 1. Introduction.- 2. General Considerations in Reactions Relating to MNi.- 2.1. Stereo-differentiating Reactions.- 2.2. Catalysts for Enantio-differentiating Hydrogenation Reactions.- 3. MNi as a Practical Enantio-differentiating Hydrogenation Catalyst.- 3.1. Development and Improvement of Catalyst and Reaction Conditions.- 3.1.1. The Discovery of MNi.- 3.1.2. Modification Variables.- 3.1.3. Preparation Variables of the Metal Catalyst.- 3.1.4. Reaction Variables.- 3.1.5. Supplementary Modifying Reagents.- 3.1.6. Preparation of TA-NaBr-MRNi and its Use for the Hydrogenation of MAA.- 3.2. Application of MNi for the Preparation of Optically Pure Materials.- 3.2.1. Hydrogenation of ?-Ketoester.- 3.2.2. Hydrogenation of ?-Diketones.- 3.2.3. Hydrogenation of Miscellaneous Carbonyl Compounds.- 4. MNi, its Structure and Mode of Action.- 4.1. Enantio-differentiating and Hydrogenation Steps in the Reaction Path.- 4.2. Mode of Adsorption of Modifying Reagent on Nickel Catalysts.- 4.2.1. ?-Hydroxy Acids.- 4.2.2. ?-Amino Acids.- 4.3. Enantio-differentiating and Non-enantio-differentiating Sites on MNi.- 4.3.1. Surface Condition of Catalyst and Proportion of Enantio-differentiating Sites.- 4.3.2. Control of Non-enantio-face Differentiating Sites by Partial Poisoning.- 4.4. Mode of Enantio-face Differentiation on MNi.- 5. Conclusions.- References.