Chemicals from Methanol and Carbon Monoxide.- 1. Introduction.- 2. Carbonylation of Methanol and of Methanol Derivatives.- 2.1. Transition Metal Catalyzed Carbonylation.- 2.1.1. Side Reactions.- 2.1.2. Rhodium Catalysts.- 2.1.3. Cobalt Catalysts.- 2.1.4. Nickel Catalysts.- 2.2. Base Catalyzed Carbonylation.- 3. Reductive Carbonylation of Methanol and Methanol Derived Substrates.- 3.1. Methanol Homologation.- 3.2. Homologation of Methoxy Derivatives.- 3.3. Reductive Carbonylation of Formaldehyde.- 4. Oxidative Carbonylation.- 5. Conclusions.- References.- Carbon Monoxide and Fine Chemicals Synthesis.- 1. Basis of Carbon Monoxide Chemistry.- 2. Carbonylation of Organic Halides.- 2.1. Synthesis of Aldehydes.- 2.1.1. Aromatic and Vinylic halides.- 2.1.2. Alkyl Halides.- 2.2. Synthesis of Acids and Esters.- 2.2.1. Aromatic and Vinylic Halides.- 2.2.2. Aliphatic Halides.- 2.3. Synthesis of Amides.- 2.4. Synthesis of Ketones.- 2.5. Synthesis of Acid Halides.- 2.6. Synthesis of Keto-Acids and Keto-Amides.- 2.7. Synthesis of Anhydrides.- 3. Carbonylation of Alcohols.- 3.1. Synthesis of Alcohols and Aldehydes.- 3.2. Synthesis of Carboxylic Acids.- 3.3. Synthesis of Oxalates and Carbonates.- 4. Carbonylation of Nitro Compounds.- 4.1. Isocyanates, Carbamates and Ureas.- 4.2. Synthesis of Formamides.- 5. Carbonylation of Amines.- 5.1. Synthesis of Formamides.- 5.2. Synthesis of Isocyanates, Carbamates and Ureas.- 6. Carbonylation of Alkenes.- 6.1. Synthesis of Aldehydes and Alcohols.- 6.2. Synthesis of Carboxylic Acids.- 6.3. Synthesis of Ketones.- 6.4. Oxidative Carbonylation of Alkenes.- 7. Carbonylation of Alkynes.- 7.1. Synthesis of Unsaturated Acids.- 7.2. Synthesis of Hydroquinones.- 8. Carbonylation of C-H Bonds.- 8.1. Synthesis of Aldehydes.- 8.2. Synthesis of Carboxylic Acids.- 8.2.1. Synthesis of Aromatic Carboxylic Acids.- 8.2.2. Synthesis of Aliphatic Carboxylic Acids.- 8.3. Synthesis of Ketones.- 9. Synthesis of Amino Acids.- 10. Conclusion.- References.- Transition Metal Catalyzed Reductions of Organic Molecules by Molecular Hydrogen and Hydrides: An Overview.- 1. Activation of Molecular Hydrogen.- 1.1. H2Activation by Oxidative Addition (OA).- 1.2. H2 Activation by Homolysis.- 1.3. H2 Activation by Heterolytic Addition.- 1.4. The Case of Pentamethylcyclopentadienyl Rh and Ir Complexes.- 1.5. Organolanthanides and Actinides as Catalysts for Olefin Hydrogenation.- 2. Some Recent Developments in Hydrogenation: Activation of Hydrides by Transition Metal Derivatives.- 2.1. Examples.- 2.1.1. LiAlH4with First Row Transition Metal Halides.- 2.1.2. LiAlH4with Hard Lewis Acids.- 2.1.3. NaBH4with Ni or Co Salts in MeOH.- 2.1.4. Hydroboration with NaBH4.- 2.1.5. Reduction of Acid Chlorides and Nitro Groups.- 2.1.6. Vanadium Chloride and Lithium Hydride.- 2.1.7. Complex Reducing Agents.- 2.2. Unusual Chemoselectivity.- 2.2.1. Reversal of Normal Reduction Sequences with Lanthanide-NaBH4Systems.- 2.2.2. Selective Hydrogenation of Unsaturated Aldehydes and Ketones.- 2.3. Reduction of ?,?-Unsaturated Nitriles.- 2.4. Hydrogenation of Aromatic Nuclei.- 3. Hydrosilylation.- 3.1. Extensions of Hydrosilylation Reactions.- 3.1.1. Ring Closure.- 3.1.2. Hydrosilylation of Conjugated Dienes.- 3.1.3. Hydrosilylation of Acetylenes.- 3.1.4. Reduction of C=0.- 3.1.5. Reduction of ?,?-Unsaturated Carbonyl Compounds.- 3.1.6. Hydrosilylation of C=N Bonds.- 4. Hydrozirconation.- 4.1. Functional Group Compatibility.- References.- Application of Transition Metals in Natural Product and Heterocycle Synthesis.- 1. Introduction.- 1.1. Introduction of Functional Groups.- 1.2. Improvement of Classical Organic Reactions.- 1.3. Construction of the Skeleton of Organic Molecules.- 2. Stoichiometric Reactions: Organocopper Derivatives.- 2.1. Preparation of Organocopper Reagents.- 2.2. Stability of Cuprates.- 2.3. Conjugate Additions - Organocuprates.- 2.4. Some Particular Applications of Addition Reactions of Organocuprates.- 2.4.1.,6-Conjugate Addition.- 2.4.2. Homoallylic Addition to Epoxides.- 2.4.3. Ring Opening Reactions.- 2.4.4. Substitution to Acetoxy Groups.- 2.5. Coupling Reactions.- 2.5.1. Aromatic Coupling Reactions.- 2.5.2. Copper Mediated Coupling of an Organometallic Reagent with an Alkyl or Vinyl Halide.- 3. Catalytic Reaction: Palladium and Nickel Organometallic Reagents.- 3.1. The Key Intermediates.- 3.2. Activation by ?-Complex Formation.- 3.3. Remark.- 4. Applications of Palladium and Nickel Complexes in Natural Product Synthesis.- 4.1. Coupling Reactions.- 4.1.1. Typical Cross Coupling Reactions of Allyl Groups.- (A) Cross Coupling Reaction of Allyl Halides.- (B) Cross Coupling Reactions of Aromatic Halides.- (C) Cross Coupling Reactions of Aryl Halides with ?-Allyl-Nickel Complexes.- (D) Palladium Catalyzed Cross Coupling Reactions of Organometallics.- 4.2. Alkylation Reactions.- 4.2.1. Examples of Nucleophiles Useful in ?-Allyl-Palladium Substitution Processes.- (A) Malonates.- (B) Sulfones.- (C) Nitroalkanes.- 4.3. Cyclizations.- 4.4.,4-Addition to Conjugated Systems.- 4.5. Telomerizations and Oligomerizations.- 4.5.1. Preparation of Linear Telomers and Oligomers.- 4.5.2. Preparation of Cyclic Oligomers.- 4.6. Carbonylation Reactions.- 4.7. Prototropic Isomerizations and Rearrangements.- 4.8. Elimination and Decarboxylation Reactions.- 4.9. Transmetallation.- 4.10. Metallation.- 4.11. Applications of Oxidation and Hydrogenation.- 4.11.1. Oxidations.- 4.11.2. Hydrogenations.- 5. Particular Applications of Transition Metals.- 5.1. Group Protection by Complex Formation.- 5.2. Iron Complexes: Cationic Complexes.- 5.3. Anionic Transition Metal Reagents.- 5.4. Titanium and Zirconium.- 5.5. Metathesis.- 6. Applications of Transition Metals in Hydride Chemistry.- 6.1. Organoboron Chemistry.- 6.2. Alane Chemistry.- 6.3. Tin Hydride Chemistry.- 6.4. Hydrozirconation.- 6.4.1. Applications of Hydrozirconation to the Synthesis of Biologically Active Compounds.- 6.4.2. Particular Applications of Organozirconium Reagents.- 6.5. Hydrosilylation.- 7. Application of Transition Metal Catalysis in Heterocyclic Synthesis (Typical Examples).- 7.1. Typical Examples of Heterocyclic System Synthesis.- 7.2. Pyrrole Synthesis.- 7.3. Isoquinoline and Quinoline.- 7.4. ?-Lactam Chemistry.- 7.5. Lactone Synthesis.- 7.6. Cyclic Ether Synthesis.- 7.7. Miscellaneous Examples.- 8. Transition Metal-Catalyzed Reactions of Carbenes.- 8.1. Catalytic Reaction.- 8.1.1. Cycloaddition of Carbenes to Alkenes.- 8.1.2. Insertion Reactions.- 8.2. Stoichiometric Reactions of Carbenoids and Ylides.- References.- Application of Telomerization and Dimerization to the Synthesis of Fine Chemicals.- 1. Telomerization Reactions.- 1.1. Telomerization of Butadiene with Acetic Acid.- 1.2. Telomerization of Butadiene with Alcohols and Phenol.- 1.3. Telomerization of Butadiene with C-H-Acidic Compounds.- 1.4. Telomerization of Butadiene with Nitroalkanes.- 1.5. Carboxy-Telomerization of Butadiene.- 1.6. Telomerization of Isoprene.- 1.7. Telomerization of Piperylene.- 1.8. Telomerization of,3-Dimethylbutadiene.- 2. Dimerization Reactions.- 2.1. Dimerization of Functionalized Olefins.- 2.2. Codimerization of Different Olefins.- 2.3. Codimerization of Dienes with Functional Olefins.- 2.4. Dimerization of Dienes Followed by Functionalization.- 2.4.1. Dimerization of Isoprene.- 2.4.2. Functionalization of Isoprene Dimers.- 3. Conclusions.- References.- Oligomerization of Mono olefins.- 1. The Main Catalysts for Oligomerization.- 1.1. Catalysts with Some Isomerizing Activity.- 1.2. Catalysts Forming Linear Oligomers from Ethylene.- 1.3. Catalysts Without Any Isomerizing Activity.- 2. Mechanistic Considerations.- 3. Heterogeneous and Supported Catalysts.- 4. Industrial Developments.- 4.1. Shop Process.- 4.2. Dimersol Process.- 4.3. Alphabutol Process.- References.- Coordination Polymerization of Monoolefins and Diolefins.- 1. Introduction: The Discovery.- 2. Polymerization of Monoolefins.- 2.1.
Phenomenological Aspects of the Reaction.- 2.1.1. Importance.- 2.1.2. Heterogeneous Systems.- 2.1.3. Soluble Complexes.- 2.1.4. Role of the Two Metals.- 2.2. The Mechanism and Molecular Characteristics of Polymerization Catalysis with TiCl3-A1R3.- 2.2.1. The Initiation Step.- 2.2.2. The Propagation Steps.- 2.2.3. The Energetics of the Chaingrowth.- 2.2.4. Kinetic Features.- 2.2.4.1. General Laws.- 2.2.4.2. Number of Active Sites.- 2.2.5. The Stereoregulation.- 2.2.5.1. Cossee's Proposal.- 2.2.5.2. The Rodriguez-Van Looy Model.- 2.2.5.3. More Recent Approachs.- 2.2.6. Chain Termination.- 2.3. Comparison with Soluble Catalytic Systems.- 2.3.1. Ethylene Polymerization.- 2.3.2. Propylene Polymerization.- 2.3.3. Conclusions.- 2.4. Other Related Mechanisms.- 2.4.1. Isomerization Polymerization.- 2.4.2. Green's Proposal.- 3. Polymerization of Diolefins.- 3.1. Polymerization with Ziegler-Natta Catalysts.- 3.1.1. Importance.- 3.1.2. Mechanism: Structural Aspects.- 3.1.3. Kinetic Aspects.- 3.2. ?-Allyl Model Catalysts and the Concept of "Chronose- lectivity".- 3.3. Conclusions.- 4. Homo- and Copolymerization or Other Types of Monomers.- 4.1. Polar Vinyl Monomers.- 4.1.1. The Catalytic Process.- 4.1.2. The Control of Apparent Reactivity in Copolymerization.- 4.2. Oxiranes.- 5. General Conclusions.- References.- Olefin Metathesis and Related Reactions.- 1. Introduction.- 2. Scope of the Reaction.- 2.1. Acyclic Monoolefins.- 2.2. Acyclic Polyolefins.- 2.3. Cyclic Olefins.- 2.4. Cyclic Diolefins.- 2.5. Cross Metathesis.- 2.6. Alkynes.- 2.7. Functional Olefins.- 3. Catalysts.- 3.1. Heterogeneous Catalysts.- 3.2. Homogeneous Catalysts.- 4. Mechanism of the Reaction.- 4.1. Transalkylation or Transalkylidenation?.- 4.2. Pairwise Mechanisms.- 4.3. Metallacyclopentanes as Intermediates.- 4.4. Non-pairwise Mechanisms.- 4.4.1. Generation of Stable Carbenes.- 4.4.2. Model Reactions.- 4.4.3. Cross Metathesis.- 4.4.4. Ring Opening Polymerization.- 4.4.5. Reaction of Carbenes and Carbynes.- 5. Stereoselectivities.- 5.1. Terminal and Internal Acyclic Olefins.- 5.2. cis- and trans-Acyclic Olefins.- 6. Initial Production of Carbene.- 6.1. Alkylidene GenerationviaReaction with a Metal alkyl Cocatalyst.- 6.1.1. Alkylidene Generation by Chemical Routes.- 6.1.2. Generation by Electrochemical Routes.- 6.2. Carbene Formation Without Alkyl-Containing Cocatalysts.- 7. Metallacarbenes as Catalyst.- 8. Role of Oxygen.- 8.1. Role of Oxygen.- 8.2. Application.- 9. Industrial Applications.- 9.1. Polymerization and Ring Opening Polymerization.- 9.2. Synthesis of Mono and Polyolefins.- 9.3. Synthesis of Functionally Substituted Olefins.- 10. Conclusion.- References.- Activation of Alkane CH Bonds by Orga-nometallics.- 1. Introduction.- 2. Oxidative Addition of Alkane CH Bonds to Organometallics.- 2.1. Background. Oxidative Addition of Activatedsp3 CH Bonds.- 2.2. Direct Observation of the Oxidative Addition Reaction.- 2.3. Reactions of Alkanes by Oxidative Addition.- 3. Activation of Alkanes by Organoactinides.- 4. Conclusions.- References.- Coordination Photochemistry: Photoinduced Electron Transfer and Redox Photocatalysis.- 1. Introduction.- 2. Properties of the Excited State.- 2.1. Kinetic Aspect.- 2.2. Redox Properties of the Excited State..- 3. Examples of Coordination Compounds with Charge Transfer Transitions.- 3.1. Various Transitions.- 3.2. Ru(bipy)3, A complex with a Long-Lived MLCT Excited State.- 3.3. Other Examples: d6 or d10 Complexes.- 4. Electron Transfer Reaction of the Excited State.- 5. Photochemical Conversion and Storage of Light Energy.- 5.1. Principle.- 5.2. A Non-Redox example: Isomerization ofNorbornadiene.- 5.3. Photochemical Reduction of Water.- 6. Concluding Remarks.- An Introduction to the Field of Catalysis by Molecular Clusters and by Supported Molecular Clusters and Complexes.- 1. An Introduction to Molecular Clusters.- 1.1. Definition of Molecular Clusters.- 1.2. Bonding in Molecular Clusters.- 1.2.1. The Metal-Metal Bond in Clusters.- 1.2.2. The Metal-Ligand Bond.- 1.3. Dynamic Behaviour of Molecular Clusters.- 1.3.1. Ligand Migration over the Clusters Surface.- 1.3.2. Structural Rearrrangement Within the Metal Core.- 1.3.3. Ligand Migration Within the Metal Cluster Unit.- 1.4. Reactivity of Molecular Clusters.- 1.4.1. Electrophilic Attack.- 1.4.2. Nucleophilic Addition.- 1.4.3. Nucleophilic Attack at the Ligands.- 1.4.4. Oxidative Addition.- 1.5. Molecular Clusters as Structural Models of Intermediates or Chemisorbed Species in Surface Science.- 2. Catalysis by Molecular Clusters.- 2.1. The Relationship Between Molecular Clusters and Small Metal Particles.- 2.2. Homogeneous Cluster Catalyzed Reactions.- 2.3. Catalysis by Supported Molecular Clusters.- 2.3.1. The Molecular Clusters Skeleton Remains Intact.- 2.3.2. The Supported Molecular Frame is Involved in Some Steps of the Catalytic Cycle.- 2.3.3. The Molecular Cluster is Decomposed.- 2.4. Supported Clusters and Heterogeneous Catalysis: Surface Organometallic Chemistry.- References.- Future Trends in Homogeneous Catalysis.- 1. Industrial Applications of Homogeneous Catalysis.- 2. Advantages and Disadvantages of Homogeneous Catalysis.- 3. Future Applications of Homogeneous Catalysis.- 3.1. Changing Raw Material Supply.- 3.1.1. Synthesis Gas Chemistry.- 3.1.2. Alkane Chemistry.- 3.1.3. Carbon Dioxide Chemistry.- 3.2. Impacts by Engineering Requirements.- 3.3. Technological Drives.- 3.4. Society Needs.- References.- Index 349.